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Efficient quantum Monte Carlo update schemes catleelcted loopshave recently been proposed, which
improve the efficiency of simulations of quantum lattice models. We propose to generalize the detailed balance
equations at the local level during the loop construction by accounting for the matrix elements of the operators
associated with open world-line segments. Using linear programming techniques to solve the generalized
equations, we look for optimal construction schemes for directed loops. This also allows for an extension of the
directed loop scheme to general lattice models, such as high-spin or bosonic models. The resulting algorithms
are bounce free in larger regions of parameter space than the original directed loop algorithm. The generalized
directed loop method is applied to the magnetization process of spin chains in order to compare its efficiency
to that of previous directed loop schemes. In contrast to general expectations, we find that minimizing bounces
alone does not always lead to more efficient algorithms in terms of autocorrelations of physical observables,
because of the nonuniqueness of the bounce-free solutions. We therefore propose different general strategies to
further minimize autocorrelations, which can be used as supplementary requirements in any directed loop
scheme. We show by calculating autocorrelation times for different observables that such strategies indeed lead
to improved efficiency; however, we find that the optimal strategy depends not only on the model parameters
but also on the observable of interest.
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I. INTRODUCTION MC configuration. The resulting worm algorithi®] pro-
Monte Carlo(MC) simulations are powerful numerical C€€ds by first creating a pair of open world-line fragméats
tools for high-precision studies of many-body systems, inVorm. One of these fragments is then moved through space-
both the classical and quantum regimes. Especially nedf™e using local Metropolis or heat bath updates, until the
second-order phase transitions, where physical length scalf¥C ends of the worm meet again. This algorithm thus con-
diverge, it is essential to simulate large systems, which haSiStS Of only local updates of worm ends in the extended

become possible due to significant algorithmic advance%ﬂogﬁgur?tion space,_lt}#t caln perform nonlocal changes :{n Lhe
within the last 15 years. configurations. The cluster generation process of the

In classical simulations, conventional MC algorithms worm algorithm allows for self-intersections and backtrack-

sample the canonical partition function by making local con-"9 of the worm, which might undo previous changes. While

figurational updates. While being straightforward, this a _not being as efficient as the loop algorithm in cases with
9 P ’ 9 19 ’ P spin-inversion or particle-hole symmetry, the great advantage
proach turns out to slow down simulations near phase tra

- ) . : . ) "of the worm algorithm is that it remains efficient in an ex-
sitions and gives rise to long autocorrelation times in th

) &ended parameter regime—e.g., in the presence of a magnetic
measurement of the relevant physical observables. For clagg|q for spin modeld5].

sical spinlike systems, this critical slowing down can be  aAn alternative QMC approach, which is not based upon
overcome using cluster algorithni], which update large the world-line representation, is the stochastic series expan-
clusters of spins in a single MC step. sion (SSB [7], a generalization of Handscomb’s algorithm

The generalization of these nonlocal update schemes @] for the Heisenberg model. While in the original imple-
the case of quantum Monte Carl@MC) simulations was mentation[7] local MC updates were used, Sandvik later
initiated by the development of the loop algorithm in the developed a cluster update, called the operator-loop update
world-line representatiof2,3]. This very efficient method for the SSE representatidi®], which allows for nonlocal
has been used in many studies, where it allowed the simulahanges of MC configurations. Within this SSE approach one
tion of large systems at very low temperatures. In the origi-can efficiently simulate models for which the world-line loop
nal formulation (either in discrete[2] or continuous[4] algorithm suffers from a slowing down. Furthermore, loop
imaginary time, the loop algorithm, however, has a major algorithms are recovered in models with spin-inversion or
drawback: to work efficiently, its application is restricted to particle-hole symmetry3]. In fact, the two approaches—
specific parameter regimes. In the case of quantum spiworld-line and SSE QMC—are closely relatgtD,11].
models, for example, it suffers from a severe slowing down Recently, it has been realized that the rules used to con-
upon turning on a magnetic fie[&]. struct the operator loops in the original implementatidh

This problem can be circumvented by performing clustemere just one possible choice and that one can consider gen-
constructions in an extended configuration space, which ineralized rules, which give rise to more efficient algorithms
cludes world-line configurations with two open world-line [12,13. This approach led to the construction of the “di-
fragmentd 6], representing physical operators inserted into arected loop” update scheme by Syljuasen and Sandvik, first
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for spin-1/2 system$12]. Later it was adapted to general Then we introduce the generalized directed loop equations in
spin-S models by Harada and Kawashima through a coarsein Sec. Ill. In Sec. IV we show how to numerically solve

grained picture of the loop algorithid4]. Using a Holstein-  these equations in order to obtain directed loop schemes with
Primakov transformation of the large spgtalgorithm, a  minimized bounces using linear programming techniques. In
coarse-grained loop algorithm for soft-core bosonic modelsec. Vv we present algorithmic phase diagrams obtained
was also developedl5]. The improvements achieved using within the framework proposed here and compare them with

the directed loop approach have been demonstrated in valihose obtained using previous directed loop schemes. We dis-
ous recent studiel6-19. For a recent review of nonlocal s in Sec. VI results on autocorrelation times obtained

updates in QMC, see Ref20]. . . ._from the simulation of the magnetization process of various
In this work, we show that the equations which determine

the directed | fructi low dditional \ htquantum spin chains. Our results indicate that minimizing
€ directed loop construction allow Tor additional Weight ,,,,,ce alone does not necessary lead to reduced autocorre-

factors, which were not considered by Syljudsen and SandviK .. . ) :
[12] or used in[13,17]. We explain how these weight factors tions of physical observables: W? therefore _mtroduce n
Sec. VII supplementary strategies in order to improve the

naturally arise from a formulation of the directed loop con- f f directed | loorith d t aut
struction within the extended configuration space. Instead df€/Mormance ol directed loop algorithms and present autocor-

viewing the worm ends as link discontinuitiéa] we con- r_elation times obtained using these additional strategies. We
sider them to represent physical operators with in generdin@lly conclude in Sec. VIl.

nonunity matrix elements,12]. Taking these natural weight
factors into account and numerically optimizing solutions to
the generalized directed loop equations, we are able to con-
struct algorithms which display larger regions in parameter A. Presentation of the method and notations

space where the worm propagation is bounce free; i.e., a o .
worm never backtracks. This numerical approach allows for 1€ SSE QMC method was first introduced by Sandvik

the implementation of directed loop algorithms in a generic@"d Kurkijarvi[7]. In this original implementation local MC
QMC simulation code, which is not restricted to specific UPdates schemes were employed. Later Sandvik developed
models. In particular, it provides directed loop algorithms forthe operator-loop updated], which has recently been im-
spin-S and soft-core boson systems directly using the nufroved by employing the idea of directed lodj<]. Before
merical solution, without coarse graining, or using the split-discussing our scheme, which steams from an extension of
spin representation and Holstein-Primakov transformatiorihese ideas, we review in this section the formulation of the
[14,15. SSE method and the extended configuration space interpre-
Performing simulations and calculating autocorrelationtation of the operator-loop update.
times of different observables, we find that minimizing To develop the SSE QMC scheme, we start from a high-

bounces does not necessarily imply more efficient algotemperature series expansion of the partition function
rithms. In certain cases, the generalized directed loop algo-

II. STOCHASTIC SERIES EXPANSION

rithm presented in this paper has superior performances to o 8"
the standard directed loop scheme, but in other cases it does Z=Tre =3 > “(a|(- H)"w), (1)
not. We identify the nonuniqueness of bounce-minimized so- n=0 « N

lutions as the source of this observation: in the general case

there are many solutions to the directed loop equations witlvhereH denotes the Hamiltonian ar{tkv)} a Hilbert space
minimal bounces, which, however, do not lead to the sam@asis of the system under consideration. The SSE approach
performance of the algorithm. aims to develop an importance sampling framework for the

To further improve the algorithm, we thus propose variousierms contributing to the partition function for a given tem-
additionalstrategies, which select out certain solutions in theperatureT: 1/B.

subset of those which minimize bounces. These additional The resu|ting Monte Carlo scheme can be app“ed to a

strategies can also be used in the standard directed loop ajgrge variety of Hamiltonians, including multiple-particle ex-
proach. Calculating again autocorrelation times with thesghange and long-ranged interaction terms. Here we restrict
different strategies, we indeed find that the efficiency can bgurselves to models with on-site and short-ranged two-site
further improved largely. However, we find that the specificinteractions in order to simplify the following discussion.

strategy that gives rise to the best performances depends on The Hamiltonian can then be decomposed into a sum of
the specific Hamiltonian and on the observable of interestyond Hamiltonians:

The conclusion we reach from these results is that in most

cases short simulations on small systems are needed in order M
to identify the optimal strategy before performing production H=-> H,, (2)
runs. b=1

Throughout this work, we use the SSE QMC sch¢ih]
in order to present our framework, since it appears to be thehere each terrhi, is associated with one of théd bonds of
more natural approach to many problems. However, théhe lattice,b=(i(b),j(b)), connecting lattice sitegb) and
ideas presented here can as well be implemented within thigh).
path integral approacH.2]. We assume that all contributions td involving on-site

The outline of the paper is as follows: We review in Sec.terms have been expressed as additional two-site terms
Il the SSE method and the operator-loop update schemavithin the H,. For example, a chemical potential term for
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two sites, un; and un;, can be added tdi;; as u(xn value for which all diagonal matrix elements are positive,
+k;n;), with suitable constants;, «;, assuring the sum over and an additional offset=0. The effects of a finite value for

all such terms recovers the initial sum. e on the efficiency of the SSE algorithm will be discussed in
Inserting this decomposition of the Hamiltonian into the S€c. V. _ o
partition function we obtain For the nondiagonal part of the Hamiltonian an equally

. A simple remedy does not exist. However, if only operator

_ B strings with an even number of negative matrix elements
z=22 > I (a(p)|pr|oz(p— ). @ have a finite contribution to Ed6), the relative weights are
again well suited to define a probability distribution. One can
where{C,} denotes the set of all concatenationsnobond  show that this is in general the case for bosonic models,
HamiltoniansH,, each called an operator string. We haveferromagnetic spin models, and antiferromagnetic spin mod-
furthermore inserted seta(p)) of Hilbert space basis vec- els on bipartite lattices.
tors between each pair of consecutive bond Hamiltonians. Given the positivity of the relative weights, one then has
Therefore|a(p)) is the state that results after applying the to construct efficient update schemes that generate new con-
first p bond Hamiltonians in the operator string to the initial figurations from a given one. Within SSE simulations that

=0 {C,} a(0)....a(A) N p=1

state|a(0)): employ operator-loop updates, each Monte Carlo step con-
b sists of two parts. In the first step attempts are made to

_ change the expansion ordeiby inserting and removing the
|ap)) = llj[l Hbi|a(o)>' (4) number of unit operators. During this update step, all propa-

gation levelsp=1, ... ,A are traversed in ascending order. If
Furthermore|a(A))=|a(0)), reflecting the periodicity in the  the current operator is an unit operaky, it is replaced by a
propagation direction. In the following we also denote bybond Hamiltonian with a certain probability which guaran-
|ai(p)) the local state at sitegiven the state vectde(p)), SO0 tees detailed balance. The reverse process—i.e., substitution
that |a(p))=|a1(p)) ® |ax(p)) ® - - ® |aNS(p)>, where Ng de-  of a bond Hamiltonian by a unit operator—is only attempted

notes the number of lattice sites. if the action of the current bond Hamiltonian does not
For a finite system and at finite temperature the relevanthange the propagated state—i.e., if
exponents of this power series are centered around |a(p))=|a(p— 1))—since otherwise the resulting contribution

to Eq. (6) would vanish.
() = NB. ®) The acceptance probabilities for both substitutions, as de-
Hence we can truncate the infinite sum oveat a finite  termined from detailed balance, are
cutoff length A o« Ng8 without introducing any systematic er-
ror for practical computations. The best value forcan be
determined and adjusted during the equilibration part of the P(Hy— Hp) = min{l,

M B(a(p)|Hy|a(p - 1)>}

simulation—e.g., by setting\>(4/3)n after each update A-n
step.
In order to retain a constant length of the operator strings (A=n+1)s
in the truncated expansion of E(B) we insert(A—n) unit P(Hy — Hg) = min{l |“<p)>v“(p‘1)>]_
operators Id into every operator string of lengtk A and M Ba(p)[Hp|a(p - 1))

defineHy=1d. Taking the number of such possible insertions

into account, we obtain The second part of a MC update step consists of perform-

ing a certain fixed number of operator-loop updates, modify-
A B'(A - n)! A ing the configuration obtained from the preceding diagonal

z=>> X TH <a(p)|pr|a(p— 1)), update. Keeping the expansion oragennchanged, attempts
n=0{Cy} a(0),...a(A) N are made to change the intermediate state vedta(s)).

(6) Most importantly, the employed cluster updates significantly
reduce autocorrelations between successive MC configura-
tions.

The operator-loop update makes use of a representation
for the operator stringc, as a quadruply linked list of ver-
tices, each vertex being associated with a nonunity operator

in the operator string. To construct this representation, con-

Instead.of evaluating aII. possible terms in the exp.)an:sior}‘ider a propagation leveb with a corresponding bond
of Eq. (), in a SSE QMC simulation one attempts to impor- HamiltonianHy, . Since the bontb, connects two-lattice sites

tance sample over all contributions to H§) according to . NG .

their relative weight. In order to interpret these weights as'(bp) and j(by), we can represent it by a four-leg' vertex,
probabilities, all the matrix elements of each bond HamiI-W.here the legs carry the 'OC?' states on siteg) and)(by),
tonianH,, should be positive or zero. Concerning the diago-3'V&" by|ai,(P—1)), respectivelyajq)(p-1)), before and
nal part of the Hamiltonian, one can assure this by adding &Y |iw,)(P)), respectivelyia;e, ,(p)), after the action of the
suitable constan€ to each bond Hamiltonian. The constant bond HamiltoniarH,, ; see Fig. 1. We denote the direct prod-
C can be decomposed &s=C,+¢, whereC, is the minimal  uct of the four states on the legs of a vertex by

wheren now denotes the number of nonunity operators in
the operator stringC,. Each such operator string is thus
given by an index sequendg, =(b;,b,, ... b)), where on
each propagation levgd=1, ... A eitherb,=0 for an unit
operator or kb,<M for a bond Hamiltonian.
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4 —— A
FIG. 1. The vertex stat&, is equal to the direct product of the
local states on its four legE,=|0(1)) ® |0(2)) @ |0(3)) ® |5(4)).
2 =]0(D) ® |0(2)) ® |0(3)) ® |0(4)), (7 . .
so that on the propagation levelthe vertex state is
3= |ai(bp)(p -))e |aj(bp)(p -1))e |ai<bp)(p)> @ (b)
® |aj<bp)(p)>. FIG. 2. The two possible ways of inserting a pair of operators on

a states: (a) insertion of a pairAOAg, (b) insertion of a paim(T)Ao.
In general, given the stat®) of a vertex with an associated ) . .
bondb, we define the weight of this vertex by During construction the worm is extended at one end,
5 called thehead whereas the other endalledtail) remains
W(b,2) =[{a(3)| ® (o(4)|IH[|o()) ® o(2))], (8) static[21]. The body of the worm represents part of the new
~ configuration. The goal of the following discussion is to find
whereHy, is the restriction of the bond Hamiltonidth,, act-  rules for the motion of the worm head, which lead to effi-
ing on the states at siteégb) and j(b). With this definition, cient updates of the operator string. In analogy with the
the vertex weight for a vertex at propagation lepetquals worm algorithm[6] we think of each intermediate worm

its contribution to the matrix element in E¢(f): configuration as being defined in an extended configuration
b3 )= space, which includes operator strings that in addition to
W(b,, %) = <01(p)|pr|a(p_ ). 9) bond-operators contain source terms for the worm ends. For

For each led=1, ...,4 of the vertex at propagation level exarpple, in a bosonic model these would be the operajors
pthere is a led’ of another vertex at some propagation level®" & Which decrement or increment the local occupation
p', for which there is no other vertex in between the propallumber. For spin models, these operators wouldsband
gation levelsp andp’ acting on the corresponding site of the 3 - 1N fact, this interpretation suggests to associate weight
lattice. In particular, for a le¢=1,2 (3, 4), we find the cor- factors with both the creatlo(msertlor) and closure(re-
responding leg, by moving along the decreasingreasing moval) c_;f the worm, as well as the motion of Fhe worm head,
propagation levels, until we find the first vertex and lég deper;gllng on the action of the corresponding operaars
corresponding to the same lattice site. Doing so, the periodi@"d@ in the bosonic example
boundary of the propagating state must be taken into ac- Within this view the creation of a worm corresponqrs to
count, so that upon moving beyord=A we return atp’ th$ insertion of two operators, which we dend{gand A,
=0. Each leg then has an outgoing and incoming link, suctt®o being the Hermitian conjugate oAp). One operator
obtaining a bidirectional linked list for the vertices. In fact, Stands for the worm head, the other the tail. we choose to
this vertex list contains the complete information about theNSert these two operators randomly, either g, [Fig.
operator string. The operator-loop update performs changed@] Or asAgA, [Fig. 2(b)] at a random point in the operator
in this vertex list along closed loops, resulting in a new op-liSt, between twanonidentity vertices with a certain prob-
erator string and basis state—i.e., a new MC configuration 2Pility, which will be specified below. Furthermore, the state

of the vertex legs at the insertion point is denosgd
B. Construction of operator loops Then we randomly choose to move one of the two opera-

Each operator loop results from the stepwise constructiof°rS; Which thus becomes the head of the worm. The other
of a closed path through the vertex list, which represent9Perator remains at the insertion position, constituting the
changes on the leg states and the bond-operator content $P'M's tail. The worm head is associated with a transforma-
the visited vertices. For the remainder of this work we calltion To acting on the state; along the direction of propaga-
the path generated in the vertex listwarm, which upon tion, so thats, is changed tdly(s,), whereT(s) denotes the
closure constitutes the operator loop. normalized stat¢22]:
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b
© FIG. 4. The two possible closings of a worm. The initial pair
FIG. 3. The two possibilities of moving the worm after insertion inserted WasAng [Fig. 2(b)] and the first move the propagation of

of an initial pairAgAO. (a) The operatorA, is movedupwardsin Ay upward in propagation directiofFig. 3(@)], so that the initial
propagation direction. As a result, the transformation induced on th&ransformation isTO:Ag. (a) For a bounce loop, the final transfor-
states is To=A$ [the new state iio(s):z{,(s)]. (b) The OperatoAg mation TN:Tg. (b) F0|_r a normal I_oop, the final_ t_re_msformgtid’rm
is moveddownwardsin negative propagation direction. The trans- = To- The dashed horizontal line indicates the initial position of the
formation induced on the stateis againT,=A] [the new state OPEratorAo.

beingfl'o(s):hAg(s)]. Dashed horizontal lines indicate where the op-

erators were before they were moved. (i), (i), and Eq.(11) the type of transformation performed by
the worm head may be inverted —T') or remain un-
B T(s) changedT—T).
T(s) = . (10) We denote the new operator that is carried by the worm
[Tl head after passage ¥f by A; and the corresponding trans-

For example, consider the case where we insert a pafPrmationT;. The state of the exit lelf is denoteds,; before
AlA [Fig. 2b)]. If we choose to move the operatég along  the passage of the worm affd(s;) after the worm action.
the positive direction of propagation, this corresponds to the For general models the modificatiofisand(ii) can occur
case where a transformatid’ra:Ag operates on the statg  independently. For a model with conservation laeg., of
in the positive propagation directigfig. 3@]. If we choose the number of particles for bosonic models or of magnetiza-
to instead propagate the operafgrin the negative direction, tion for spin models these lead to the following restriction:
this corresponds to a transformatidg=A] on the states;,  if the direction of propagation stays constant, the operator
but now in the negative direction of propagatidfig. 3b)].  remains the same, so th#&,—A;=A,. Otherwise, it is
More generally speaking, the transformatibperformed on inverted—i.e.,AO—>A1:Ag.

the state depends on the propagated operatand on its After the worm head leaves the first vertgx from the
direction of propagation in the following way: exit legl; it continues on to the second vertéx, entering on
leg I,. This intervertex propagation of the worm head pro-
_J AT for positive direction of propagation, ceeds along the connections within the quadruply linked ver-
~ |A for negative direction of propagation. tex list.

The state on led, before the worm passes throughsjs

11 ~
_ . . ( .) =s; and will be transformed td(s,) upon passage. The
A proposed insertion of the worithe pair of operatojss  worm head leave¥, from exit leglj, where the leg state

accepted with a probabilitiyser(To,s,), which depends on changes frons) to T,(s}), T, being the transformation which

the;ﬁsﬁtivg t(rjansfor.ma(tjitl))ﬁo r;nd the 'statel. Thi? ijnserlticzjnb Icorresponds to the new operafgrassociated with the worm
probability Is determined by the requirements of detailed baly, -4 after it passed,.

ance and will be discussed in Sec. Il C 1.

Once these initial decisions are made, the worm head i
propagated to the negtonidentity vertexV; in the operator
string along the current direction of propagation. The wor
enters verte¥/, on the entrance leg €[1,2,3,4, whichis o510 aqr or Tu=TJ. In the first case we call the resulting
currently in the stgtesl before the passage of the worm and operator loop a “normal” loop, otherwise a “bounce” loop
will be modified toTy(s,) by the action of the worm head. At (Fig. 4). The bounce loop corresponds to the case in which
the vertexV, the worm chooses an exit ldg according to  the order of the operators after the return of the head to the
certain probabilities as discussed in the next section. Detil has the same orientation as directly after inserfiig.
pending on the particular exit lelg (i) the direction of the 4(a)]. For a normal loop the relative order of the operators is
worm’s propagation may changéii) the operator corre- inverted[Fig. 4(b)].
sponding to the worm head may be hermitian conjugated In the method presented there, the worm always stops
(A— A") or stay the saméA— A), and as a consequence of when it has reached its starting point. We note that there are

This process continues until the worm exits a vengx
ffom a legly, and from there returns to the insertion point.
There are two possibilities for the worm head to approach
Mthe insertion point: either the final transformatidy is the
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/4
Leg I} s} : State of the leg I}

Leg ; \ - before the worm’s transit

s; : State of the leg I; FIG. 5. (Color online@ Worm
’ i - Vertex ¢ ; ; TR
before the worm’s transit sitting on bond type b; entering _thelth vertex during its
construction.
\ %, : Current legs’ states
(before worm’s transit)
W (b;, 3;) : Vertex weight

Ti—1 : Operator carried
by the worm’s head

Ti_1(s;) : State of the leg I;
after the worm’s transit

other schemeldl 4,15 where the worm does not necessary dotion [9], Sandvik showed that a generic solution for any
so, but continues with a certain probability. In Sec. Ill C 3, model is to set Pbi(Ei,Ti_1—>Ti,Ii—>Ii’) proportional to

we discuss the efficiency of our choice. W(b;,3)—i.e., the weight of the vertex after the passage of
the worm (this solution is often referred to as the heat bath
IIl. DIRECTED LOOPS solution. However, this choice turns out to be inefficient in
many cases, because of “bounce” procegses the worm
head exits a vertex from the same leg from which it entered
For the actual construction of the operator loop we needhe vertex [12]. An algorithm which minimizes the number
to specify the probabilities for choosing exit legs at eachof these bounce processes is often more efficient
visited vertex. In this section, we focus on how to derive[12-14,17,18 In this context, Syljudsen and Sandvik pro-
generalized equations for these probabilities. posed the “directed loop” updatel2], with probabilities
Consider a worm entering a vert&%, which is entirely Pbi(Ei,Ti_1—>Ti,Ii—>Ii’) chosen as to minimize or even
specified by the values of the states at its four legs, as well adiminate bounces. These probabilities are derived analyti-
the lattice bond; corresponding to this vertethereb; de-  cally for spin-1/2 models in Ref.12], and a more general
notes the bond type of théh vertex. The state of the vertex framework to obtain them is given in RéfL3].
before the entrance of the worm i¥;=|c(1))®|c(2)) The optimization(with respect to the bounce minimiza-
®|o(3))®|a(4)) (Fig. 1). tion) of the scattering probabilities has to be performed under
The worm entersV, from the entrance led; and exits the constraint of fulfilling detailed balance for the resulting
from legl/. The states at these legs before the worm passegperator-loop update. Syljudsen and Sandvik showed that in
are denoteds and s/, respectively—i.e.s=|a;(l;))), ands/

A. Generalized directed loops equations

=|o;i(l/)). Both states are changed by the worm’s passage an | ~ s, : State of the leg I/
becomeT,_4(s) andT;(s)), respectively. Correspondingly, the [T : New operator carried | . before the worm’s transit
. = _|— — by the worm’s head

total state of this vertex becomeX;=|o(1))®[c(2)) — ;
®[a(3) ®[o(4), where [o;(1))=|ai(1)), except for[a(l)) ~—| Tiler) : State of the leg I
=Ty(s), and[o(I/)=Ti(s). AAn

We definePy, (X, Ti-;—T;,li—1{) to be the conditional y YV -
probability of exiting on legl/, given that the worm head S \ Leg b
enters on led;. This “scattering” probability can in general Leg ; -
depend on the bond tyds, the transformation of the worm A sitting\{)erftg)érfd type bi
head befordT,_;) and after(T;) passingV;, the stateX;, and S, . Current legs’ states
on the actual path of the worm through this vertex—i.e., the (after worm’s transit)
legsl; andl{. For a model with conservations laws; is W (bi, ;) : Vertex weight
implicitly given by T,_; andl; and |/, as discussed in the
previous section. For clarity we illustrate our notations in Ti_1(s:) : State of the leg I;
Figs. 5 and 6. after the worm’s transit ]

What are the possible values for the scattering probabili-

ties so that the resulting operator-loop construction fulfills  FIG. 6. (Color onlin@ Worm leaving theith vertex during its
detailed balance? In the original operator-loop implementaeonstruction.
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order to fulfill detailed balance of the directed-loop updatewe prove that Eq(14) indeed guarantees detailed balance of
the following condition on the scattering probabilities is suf-the operator-loop update, as long as the worm weifhts)
ficient: fulfills the Hermiticity condition, Eq(13).
Wb, %) Py (24, Tiey = Tl = 1) B. Proof of detailed balance
=W(b, 2P, (3, TF = Tl — 1), (12) The following proof of detailed balance uses therm-
' antiworm construction principld18,23. We first calculate

which we refer to as théocal detailed balance condition, the probability to create a wormw, hitting N vertices before
since it demands detailed balance during each step of thoming back to the insertion point:

worm head propagation. The original algorithm by Sandvik

[9], where Py (%, Tioy— T, li—1{) =W(b;, %), obviously

fulfills this condition. With this choice, the probabilities do

not depend on the entrance lgg This is not true for the

bounce-minimized solution, which by definition results in where P,,; denotes the uniform probability of choosing the

direction-dependent scattering probabilities for the directednsertion point in the operator string.

loop update. Now we consider amntiworm w traversing exactly the
The idea behind the work presented here is to consider theath created by but in the reverse direction. The antiworm

motion of the worm head in the extended configurationacts on the configuration that has been obtaaféet passage

space. We show that this leads to a general set of equationd the wormw. The antiworm thus completely undoes the

for the scattering probabilities, which also guarantee detailedction of the wornw, leading back to the configuration prior

balance. These generalized equations have solutions that &b the insertion of the wormv. The antiworm is inserted at

low us to further reduce the bounce probabilities and to evetthe same place as, and its initial head operator is exactly

eliminate bounces in large regions of parameter space. the inverse of the last worm head operator, so that its inser-
If we consider the worm construction process in the ex+jon probability is Pinser(TL:TrN(Sf’\]))- The probability to cre-

tended configuration space, it appears natural to view thgte the antiworm is thus

worm head as an operator acting on the local states of the

world-line configuration and to assign the corresponding ma- - N _

trix element as an additional weight factor to its propagation. P" = PiitPinserd Th TN ] Pbi(ziniT —TELl = 1)),

The worm head matrix element {3(s)|T|s). Let us denote =1

by f(T,s)=(T(s)|T|s) the additional worm weight factor that
will be used in the generalized equations. Heérgenotes the  The ratio of the two probabilities is
transformation corresponding to the worm head anithe

local state of the world-line configuration, where the worm

N

P" = PinitPinser To- SO LT Py (54, Ticg — Tinli = 1), (15
i=1

(16)

Pinser&Toi 51) " Pbi(zini—l - Tivli — |i')

head acts. Even thoudhT,s) is alwaysequal to the worm PY/PY = ~ — , .

head matrix element in the scheme presented in this paper, Pinser TR Th(SU) =2 Pba(zi’TiT_’ ol = 1)

we use this notation such that one can recover the standard (17)

directed loop framework by puttin§(T,s) equal to 1 in all

equations given below. Using Eq.(14), we obtain

With this definition of f(T,s), the following Hermiticity N

condition is then fulfilled for allT ands: PW/pW = Pinser(-';O’Sl) f(Ttl,s)W(bi,Eﬂ _

f(T!T(s) =f(T,9) (19 Pinser T Th(SW) =1 (T, Ti(8/) W(by, %)

(18
We also denote the weight of the worm head before it emeréinces{ =s,, we obtain, using Eq(13),
the vertexV,; by f(T,_4,s), depending on both the transfor-
mation T;_; and the states. In the extended configuration (T, Ti(s)) = f(T,S40)
space, the local detailed balance equation then reads v v
for all i <N. For a “normal” loop, we furthermore havi,
f(Tio1, $)WIb;, X)) Py (24, Ty — Tyl = 1) =Ty ands|=s,, so that

= £(T],Ti(S Wb, 2Py (X0, — Tl — 1), F(TR Ta(s) = f(To.s0),

(14) again using Eq(13). In case of a “bounce” loop, whefg,

which constitutes our generalized directed loop equation. =T and s=To(s;), we obtain the same relation, since
Note that we recover the previous scheme of Syljuésem(To,Tg(TO (s))=1(Ty, ).

and Sandvik upon settin§(T,s)=1 for all T and s in this The factors off(T,s) thus exactly cancel each other in the

equation and in those given below. In the following section,numerator and denominator of E({.8), and we obtain
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N
— E . . ]_— n
prypi= Vinser To) 1 WBL2) =y Pinser(@!,n) = ———mex,
Pinserd T TN(SU) i=1 W(b;, %) 2

Detailed balance is thus fulfilled, provided

l - 5 0
Pinsed@n) = —,

Pinser{TOvsl) = Pinser{TL-TN(S{\j))- (20) 2

For hard-core bosons(N,.=1), we instead use
Pinsed@",n)= 8,0 and Pipse@,n)=4,y__, thus always in-
serting a worm.

These insertion probabilities differ from the weight as-

P (TT -p (T _ 21 signed to the operators in the extended configuration space—
inserl(To, To(S0)) = PinserTo,1) (2Y) namely, the matrix elements of these operattmse Sec.

In other words, the probability to insefat the same plage 1l C 2). As suggested in Refl12], it is possible to set

must be equal to the probability used to insert this Originalalgorithm[G]. Indeed, this choice satisfies E@1).
worm. If this condition is fulfilled for all transformation§, '

and all possible states;, we obtain a detailed balanced 2. Worm weights
operator-loop update.

(23

For a “bounce” loop, WhergL:To andTI'N(s,’\,):sl, this
condition is always fulfilled. In case of a “normal” loop,
whereTy=Ty ands{=sy, we need for Eq(20) to hold, that

In the extended configuration space, where the worm head
is associated with an operator acting on the local state in the
world-line configuration, the worm weights are equal to the
-~ . _ matrix elementsf(T,s) =(T(s)|T|s).

Let us be more specific now and discuss the kind of op- 19 pe more specific, consider employing +1 worms for a

eratorsAq that can be used as operator insertions and whiclypin model. TherT can beS' or S, so we obtain
corresponding insertion probabilities fulfill ER1). We fo-

cus on two cases: quantum sgBrand soft-core bosonic sys-  f(T,s) = f(Sf,m) = (m+ 1|Sf|m) = VS(S+ 1) - m(m+ 1).
tems. (24)
For a quantum spiissystem, the local state at a given site
is given by the projection of the spin value at that site—e.g., For a bosonic model with +1 wormg; is eithera or a'
onto thez axis. We denote this projection by which can  and thus
take 5+1 values in the rangeS;-S+1,... S-1,S {
f(T,s) =

C. Operators, insertion probabilities, worm weights,
and Green'’s functions

f@',n) =(nx1ja’ny=\(n+1),

f(a,n) =(n+ 1jan) = Vn.

For bosonic systems, the local state is given by the num-
bern of bosons at the site. If we truncate the Hilbert space by

restricting the number of bosons per site to a maximum value i
Niay N Can take integer values in the range 0, Ny We note that the operators used h@rresponding to +1

What are the possible operatokg to be used in the op- worms are not unique, as we can, for example, also employ
erator pair insertion for these models? In many cases, a godg? Of +3 worms. _ _
choice is to construct so called +1 worms+1 (-1) worm It is also possible Ehat other choices of weights such that
head acting on statechanges it te+1 (s—1). The operators  f(T,s) is not equal ta(T(s)|T|s) might lead to more efficient
A, associated with the worm ends are then simply the crealgorithms. Indeed, in the proof of detailed balance, the only
ation (annihilation) operatorsa’ (a) for bosons and the lad- requirement onf(T,s) is Eq. (13). However, the above

(25

der operator$§* (S) for spins, respectively. choices naturally appear within the extended configuration
space and lead to algorithms with less bounces, as will be
1. Insertion probabilities shown below.

For +1 worms, Eg. (21) becomes Pj,ef@,n+1)
=P, cef@’,n) in the case of bosonic models and
Pinser S, M+ 1) =Pyeer( ST, M) for spin models. We propose to alyvays (_:Iose aworm when the worm head

For a spinS model, we cannot insert a 1) worm onto returns to the insertion point. It is possible, as noted in Refs.
a given initial state withm=S (m=-S). Since we always [14’1.5].’.t0 not necessary do SO, but to offer the worm 'the
want to create a worm in all other cases, we propose thBOSSIbIIIty to continue depending on the va!ue of the f_|_n_al
following insertion probabilities: State. As a consequence, t_he worm insertion probablllfues

need to be changed accordingly, in order to retain detailed
1-6nss balance. It is not priori clear which approach results in a
Pinsed S5,m) = — (22 more efficient algorithm. Only precise studies of autocorre-
lation times could answer this question for each specific
If S=1/2, we useP s S",m)=48,+1/2 instead, so always model and set of parameters, which is, however, well beyond

3. Stopping probability

inserting a worm. the scope of this work. Instead we present an intuitive argu-
For a soft-core bosonic model limiting the maximum ment, why we expect closing worms immediately to be more
number of bosons per site M., We equivalently use efficient.
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The goal of using worm updates is the generation of largeail would be accounted for explicitly during the construction
nonlocal changes in each MC configuration, in order to decoef the worm and its propagation.
rrelate two consecutive measurements. A precise quantifica-
tion qf this decorrelation effeqt in terms of CPU time must IV. NUMERICAL STRATEGY
take into account the worm size. Making a long worm and
thus obtaining large decorrelation effects should grossly be In the preceding sections we derived generalized condi-
equivalent to making two short worms with only half the tions on the scattering probabilitié?bi(Ei,Ti_leTi,Ii—>li’),
decorrelation. However, if after the first encounter of thewhich describe the motion of the worm head at each vertex
initial point the worm has already resulted in large enoughduring the worm construction. We now look for solutions of
decorrelation, it becomes less meaningful to continue thigg. (14), for which the bounce probability for each possible
worm, as we can already perform an independent measurgertex configuration is as small as possible. We expect this to
ment instead of spending more CPU time for the construclead to an optimal algorithm in terms of autocorrelation

tion of a longer worm. times. Here, we explain how to numerically solve Et4)
for such probabilities. Note that the numerical procedure out-
4. Measuring Green’s functions line below also applies to the standard directed loop ap-

With the above choices, the measurement of Green’groaCh by .S|mply settmg(T,.s) eqyal to 1.
functions during the worm construction needs to be slightly, For a given vertex_(_:c_)nflguratlon we can c9nstruct from
modified in order to account for the presence of the explicit!'® SCAUering probabilitie®, (X, Tiy —T;, i —17) a 4x4
worm weights in the worm’s propagation. For a detailed ac- SCattering matrix’P, whose elements are
count on how the Green's functions measurements are per- Pu=Py (S, Tios— Tl — k),
formed using heat bath and standard directed loops with the :
insertion and stopping probabilities of Sec. IIIC 1 andso that the elemerf®,, corresponds to the probability of ex-
[l C 3, respectively, we refer to Ref24]. Here, we only iting from legk, given that the worm head entered the vertex
summarize the main point: In the standard directed loop alen legl.
gorithm, the value of the Green'’s function measurement for a There are various constraints on the mafixin particu-
given distance(in space and imaginary timébetween the lar, Eq. (14) constraints the elements &f according to de-
worm head and the worm tail equals the product of the matailed balance. Furthermore, in order to be interpreted as
trix element of the operator inserted at the head of the wornprobabilities, all the matrix elements Bfmust be contained
[which would be in our notationdT(s)|T|s), whereT denotes ~ Within [0, 1}—that is to say,
again the transformation corresponding to the worm head 0<Py<10k|. (26)

and s the local state of the world-line configuration, onto
which the worm head actsimes the matrix element inserted Since the worm always leaves a vertex, we must have

at its tail[in our notation(Ty(So)| To|So), WhereT, denotes the S p=101: 27
transformation corresponding to tkgtatio worm tail ands, " K= '

the local state of the world-line configuration, onto which the

worm tail actd. For a detailed graphical illustration of this i-€., each column oP must be normalized to 1.
measurement process we refer to F{Qﬂ] The 0n|y modi- Itis possible to add additional symmetry constraintd?on
fication to this scheme, which arises from using generalizedVhile these are not necessary conditions, they might in-
directed loops is as follows: In the generalized directed loofgrease the numerical accuracy in looking for the maktix
algorithm, the propagation of the worm head fulfills detailedGiven an entrance leg let us call two legk andh equiva-
balance in the extended configuration space. The wornfnt K~h, if the productfW on the right-hand side of Eq.
head’'s matrix elements are thus taken into account in th€l4) gives the same value, independent of choosingh as
probability to obtain a given configuratiofin space and the exit leg. If two equivalent legis andh both differ from
imaginary time@ between the worm head and the worm tail. the entrance leg, they must be chosen as the exit leg with
Therefore, in the generalized directed loop algorithmegual probability—i.e.,

the value of the Green’s function measurement equals Py =Py 01 # khk~ h. (29)

(To(50) Tolso)(To(S) Tolso) =(To(So) Tolso)®. Note that this is y _ |
independent off ands, and involves only the value of the A similar condition can be derived for equivalent entrance
legs by consideration of the reversed process.

After characterizing the constraints on the scattering ma-
ix P, we can now formulate our optimization criterion in
erms ofP. Our goal is to construct an optimal directed loop

matrix elementTy(sy)| TolSo)? from the static worm tail. The
Green’s function measurement in the generalized directe
loop algorithm thus requires significantly less evaluations o

matrix elements or accesses to their look-up table._ update, and as argued befi®—14 we aim to minimize the

If one would furthermore choos®se{T,s) proportional  mper of bounce processes—i.e. the bounce probabilities.
to (To(Sp)|TolS?, Similar to the worm algorithni6] discussed  In our P-matrix language, this means that we need to mini-
in Sec. Il C 1, the value of each Green’s function measuremize all diagonalmatrix elements. In order not to introduce
ment would be equal to 1, as for the worm algorithé In ~ any additional bias among the different bounce probabilities,
fact, this way the matrix elements of both the worm head andve require for the actual implementation to minimize the
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trace of the matrixP, thereby treating all bounce probabili-
ties equally:

minimize >, Py. (29)
|

In previous studie§12-15,17, sets of probabilities satis-
fying all these conditions were obtained analytically for spe-
cific models. From the constraing$4) and(26)—(28) and the
optimization goal(29), we see that we arrive in front of a —1 0 1
linear programmingproblem for each scattering matriR
[18]. This can be be solved numerically using standard linear FIG. 7. (Color onling Algorithmic phase diagram for an easy-
programming routine25]. In most cases, we found that at axis anisotropic spirsHeisenberg model in a magnetic fi¢ldield,
most one diagonal matrix element was nonzero. We also not@" ad-dimensional cubic lattice with nearest-neighbor exchahge
here that the linear programming routines picks one of thd he easy-axis anisotropy.is denotédThe shaded .region indicates
many possibly equally optimdiwith respect to condition _those parameters for wr_uch a bounce-free solution of the general-
(29)] solutions depending on its initial search point. Thiszed directed loop equations can be found.
issue will be further discussed later.

This direct way of looking for the optimalin terms of  From this procedure we obtain the algorithmic phase dia-
bounce minimizatioh solutions of the directed loop equa- gram displayed in Fig. 7.
tions is not specific to any model and needs no preceding We find a finite region of the parameter spafd|
analytical calculation. It allows for a rather generic imple-+h/(2dS <J) which corresponds to bounce-free solutions of
mentation of the SSE algorithm, where after implementatiorthe generalized directed loop equations. Within this region
of the Hamiltonian, a standard minimization rout{i@s] can  typically one needs=SJ 2. However, forA=+J, we find
be employed in order to obtain the scattering matrices priobounce-free solutions also fe=0. Outside the bounce-free

Y

to starting the actual simulation. region at least one of the scattering matrices does not allow
for a traceless solution.
V. ALGORITHMIC PHASE DIAGRAMS For S=1/2, Syljudsen and Sandvik analytically found the

) ) ) same bounce-free regidd2]. By monitoring the parameter
_In this section, we apply the preceding method to thegependence of the finite bounce probabilities, we verified
simulation of quantum systems which have been extensively,at our numerical approach indeed yields their analytical
studied previously using the SSE QMC method. solution.

To ensure that all diagonal matrix elements of the bond  gyjjugsen recently extended the directed loop framework
Hamiltonians are positive, we add a const@#Co+€ per  proposed in12] to spinS models[13]. Within our frame-
bond to the_onglna! Hamlltonlan wherg, is the m|n_|_mal work, his ansatz corresponds to settif(§,s)=1. He finds
value for wh|ch all diagonal maitrix glements are positive and,q region in parameter space where the directed loop equa-
€=0. We will see that usually a finite value efis required  {jons allow for bounce-free solutions for a®p 1. We have
in order allow for regions in parameter space which are coMyqrified this by settingf(T,s)=1 and find that, forS>1
pletely _bounce free. In genera!,_we find that INCreastNg  there is indeed no bounce-free solution, using Syljudsen’s
results in lower bounce probabilities. However, as the size Of,qice ForS=1/2 andS=1 Syljudsen recovers the phase
the operator string grows witle, this leads to increasing giaqram shown in Fig. 7. This reflects the fact that Sr
simulation times: there is clearly a trade-off between more_ 1 /5 114s=1 all nonzero matrix elements of & opera-
bouncglsallJJUtF Iesis CPU Uvn'(emall 62 t:;n(t:itlhess pounces bUtI tors are equal and thus the factd(3,s) cancel out of the
more |me_( arge €). We expect tha [here 1S no genera generalized directed loop equations, making our generaliza-
rule how toa priori choose the value of in order to obtain tion equivalent to the standard approach. Bor1 the gen-

the smallest autocorrelation times. eralized directed loop equations, including the worm weights
as extra degrees of freedom, however, allow for more

A. Heisenberg model bounce-free solutions.
First we consider the easy-axis syBrHeisenberg model The algorithmic phase diagram shown in Fig. 7 was also
in an external magnetic field, found to hold for the coarse-grained loop algorittidd].

L This suggests that the numerically determined scattering
_ Jiata 4 + _ probabilities are similar to those of the coarse graining ap-
H J% 2(S S Sq) ASZ%Z h; s (30 proach. This equivalence is also pointed out more clearly in

. . . Ref.[26].
where A denotes the easy-axis anisotropy and the first sum

extends over all nearest neighbors on dth@imensional hy-
percubic lattice. B. Soft-core bosonic Hubbard model
Numerically scanning the parameter spageh=0), we
search for regions where our optimization procedure finds Here we present algorithmic phase diagrams for the
bounce-free solution§.e., 2P, =0 for all allowed vertices  bosonic Hubbard model, with Hamiltonian
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A ?% VI. AUTOCORRELATION RESULTS

1 The results presented in the previous section suggest that
the generalized directed loop equations lead to efficient up-
date schemes. In particular, in many cases we could greatly

€> Enémt extend bounce-free regions in parameter space using the gen-
eralized directed loop method.

It is generally expected that reducing bounce processes
leads to more efficient algorithms. In this section, we there-
—— fore compare the efficiency of an arbitrarily picked solution
0 1 2 Uszax—l to the generalized directed loop algorithm to earlier ap-
g proaches: the original heat bath choice for the scattering
FIG. 8. (Color online Algorithmic phase diagram for the Probabilities by Sandvik9] and the directed loop approach
bosonic Hubbard model on d-dimensional cubic lattice with by Syljudsen and Sandvi2,13. This comparison is per-
nearest-neighbor hopping on-site interaction strengtt), and a  formed using the example of the magnetization process of
chemical potentiaju. Ny denotes the cutoff in the local occupa- quantum spin chains.
tion number. The shaded region indicates the regime of bounce-free We define each MC step to consist of a full diagonal
solutions of the generalized directed loop equations. update, followed by a fixed numbét, of worms updates,
whereN,, is chosen such that on average twice the number of
vertices in the operator string are hit by those worms. We
perform a measurement after each such Monte Carlo step
and determine integrated autocorrelation times using stan-
(31) dard method$3].

where thea! (a)) denotes boson creatidgdestruction opera- In case the effort for a single MC step was the same for
tors on sites, n.=a'a; the local densityt the hopping am- each of the three algorithms, the integrated autocorrelation

plitude, U the on-site interaction, and the chemical poten- time would establish a valid comparison between these algo-
tial. rithms in terms of CPU time. Suppose, however, that a MC

We need to restrict the simulation to a maximum numbeSteP Of Alg. Atook twice the CPU time than a MC step using
N,..,=>1 of bosons per lattice site, in order to obtain positive/Ald- B. In that case even with a 50% reduction of the auto-
diagonal bond Hamiltonian matrix elements. For the hard<correlation time upon using Alg. A, both would be equally
core bosonic casl,,.=1, we refer to the preceding section, efficient, since in order to obtain a given number of indepen-
since the hard-core bosonic Hubbard model exactly mapgent confl_guratlons, the same CPU time would be needed. In
onto a spin-1/2 antiferromagnetic Heisenberg model. thg foIIowm_g, we therefore present a measure of autocorre-

Using our numerical optimization technique we arrive at@tions, which takes the effort of each update scheme into
the algorithmic phase diagram shown in Fig. 8. There is @CCount in a machine independent way.
finite region of bounce-free solutions to the directed loop FOr this purpose, we define the worm sizeas the total
equations. However, this region shrinks upon increasinglumper of vertices that have been visited by the worm, in-
Ny @nd we need to allove=N,,,¢/2 in order to recover cluding those visited during bou.nce procesEbé;,lSI. Thg
the complete bounce-free region. numperNW, calgulated self-consistently during thgrmallza—

Syljuésen studied the directed loop equations for bosonition: is then defined such thak,(w) ~2(n), where(n) is the
models and did not obtain bounce-free regions for anyaverage number of nonidentity operators in the operator
Nrmax=>1 [13]. The same result was obtained in REf7].  string (¢:--) denotes MC averaggsin countingN,, we in-
Again this indicates the importance of allowing the addi-clude worms that are immediately stopped. The nunier
tional weight factors within our approach. can fluctuate from one simulation to another and, more, im-

Smakovet al.[15] presented a coarse-grained loop algo-Portantly, depend on the underlying algorithm: indeed, the
rithm for the simulation of soft-core bosons. They presentvorms constructed using different algorithms are not ex-
results for free bosons for which no constraint on the occuPected to be of the same size. In order to account for this
pation number is necessary within the SSE approach. Sincdifference in effort, we multiply the integrated autocorrela-
their method proceeds directly in the,,,— o limit, we ex-  tion times by a factomM,(w)/(n), which is close to 2 by
pect that using their algorithm there will remain no bounce-definition, but which might differ, depending on the underly-
free regions for finite on-site interaction. ing algorithm.

For a soft-core bosonic model without a cutoff on the The results presented below were obtained by the follow-
maximum value of bosons per site, it is also possible tdng procedure: for each of the three algorithms we run simu-
perform simulations by imposing an initial cutoffl,, lations containing 1DMC steps and calculate integrated au-
which is then adjusted during the course of the thermalizatocorrelation timesy for various observablg$]. From these
tion process. With the numerical procedure at hand, it is easwe obtain effort-corrected autocorrelation times

H=-t> afa+aal +(U2) 2 n(n-1) - uX n,
(W) i i

to recalculate the scattering matricé€ when needed— =7N(W)/(n), leading to a machine-independent measure of
namely, when the current cutoff becomes too small anckfficiency. We applied the above procedure to the autocorre-
needs to be increased. lations of the uniform magnetization and energy of antifer-
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FIG. 9. (Color onling Bounce probabilities using the heat bath h (J)

algorithm, standard directed loops, and generalized directed loops
for a L=64 sites spin-3/2XY chain in a magnetic fielh at g FIG. 10. (Color online Autocorrelation times for the uniform
=64/J. A different scale is used for the heat bath algorithm. magnetization, measured using heat bath, standard directed loops,

and generalized directed loops foLa 64 sites spin-3/XY chain

romagnetic spin chains in finite magnetic fields and preserft @ magnetic fielch at 8=64/J.

results for the spin-3/XY and the spin-2 Heisenberg case.
B. Spin-2 Heisenberg chain

A. Spin-3/2 XY chain Next, we consider the isotropi@d =1) antiferromagnetic

; - ; spin-2 Heisenberg model in a magnetic field. We simulated a
:0¥V§n5|§tlitgf L?tz ScprllgiglitY amnoﬁ]evle[lris(é. g?%r)vélrtgtée chain withL=64 sites a{3J=64 and for fields ranging from
=64/J, for fields from zero up to saturatioh=3J. For the ZEro up to saturation di=4) "’}r.“.j usinge=SJ2. In Fig. 1.2’
simulations presented here, we chese5J2-h/4 which is the resgltmg bounce probabilities are shovyn as fun.ct|.ons of
found to be the minimal ve{lue to have a bounce-free algo_rnagnet|c field strength for the three algorithms. Similar to
rithm for an XY chain in a field. The magnetic field depen- the previous case, the bounce probabilities are rather high

i ~ 0f — 0, i ifi-
dence of the bounce probability is shown for all three algo-(USIng heat bath,_ 34% 4.2 %, whereas they are signifi
rithms in Fig. 9. The bounce probability is rather large cant_ly reduced using the directed loop algonth@es_s_ Fhan
(30%—-45% for all fields for the heat bath algorithm and 1% in both cases Even though the b_ounce probab|l|t|e§ are
significantly reducedto less than 29 using the standard finite at h>0 for the generalized directed loop algorithm,
directed loop equations, while it vanishes all the way up to
the saturation field using generalized directed loops.

The rescaled autocorrelation times of the magnetization
(7 and energy7g) are shown as functions of the magnetic

field strength in Figs. 10 and 11, respectively. Using the heal o——o Heat Bath
bath algorithm,r, increases upon increasiig while 7 de- s gt:::rzrlfz::z‘i’::g:;"lzi .
creases. The uniform magnetization of the MC configuration P

is updated only during the operator-loop updates, while the
energy is not changed during this update §@&p Therefore
autocorrelations in the energy measurements are less sens
tive to the efficiency of the operator-loop update and mainly
decrease with field strength, due to increasing operator string
lengths. In both the low- and high-field regions, the improve-
ments of standard and generalized directed loops upon usin
the heat bath algorithm are clearly seen for both the energy
and magnetization in Figs. 10 and 11. Within our scheme, we
find small but not significant improvements over the standard 9 ' :

0 1 2 3
directed loops, and fon~J, the bounce-free solution even h(J)

results in slightly larger autocorrelation times than the heat

bath method. FIG. 11. (Color onling Autocorrelation times for the energy,

This clearly indicates that one must include further strat-measured using heat bath, standard directed loops, and generalized
egies, besides the bounce minimization, in order to obtain directed loops for &.=64 sites spin-3/2Y chain in a magnetic
better algorithm, as will be discussed in Sec. VII. field h at B=64/J.
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FIG. 12. (Color onling Bounce probabilities using the heat bath 0 1 th 3 4
algorithm, standard directed loops, and generalized directed loop. )

for a L=64 sites spin-2 antiferromagnetic Heisenberg chain in a

magnetic fieldh at 3=64/J. A different scale is used for the heat FIG. 14. (_Color onling Autocorrelat.ion times for the energy, .
bath algorithm. measured using heat bath, standard directed loops, and generalized

directed loops for & =64 sites spin-2 antiferromagnetic Heisenberg

they are smaller than for the standard directed loop algoShain in a magnetic fielth at 5=64/J.
rithm. Furthermore, in the limit of zero field, using general-
ized directed loops leads to a vanishing bounce probabilityfactor of 3 using heat bath rather than directed loops. This is

In Figs. 13 and 14, we present results for rescaled autoexpected given the larger bounce probabilities in Fig. 12. We
correlation times of the magnetizati¢n,) and energy(7z).  find that independent of the magnetic field strengghis less
The dependence of,, on the magnetic field has a similar for the generalized directed loop algorithm than for the stan-
tendency for all three algorithms: starting from a small valuedard one.
at zero field,n is sharply peaked dt~ 0.1J and decreases Concerning the autocorrelation timgsshown in Fig. 14,
rapidly upon further increasing the field strength, reaching anve reach similar conclusions as for the spin-X2case: the
almost constant value. This sharp peak aroir.1J prob-  autocorrelation times of the energy are reduced by a factor of
ably corresponds to the closure of the Haldane festi-  around 2 from those using the heat bath algorithm.
mated asA,;=0.089174)J for the spin-2 chaif27]] by the
magnetic field. We observe that, is larger by nearly a VII. OPTIMIZING DIRECTED LOOP ALGORITHMS

1500 : . . The results in the previous section clearly indicate that

' minimizing bounces alone is not sufficient to obtain an effi-
400 . cient algorithm, since the bounce-freéor bounce-
minimized solution is not uniqug13,17. The numerical

o lineal programming solver employed picks a particular solu-

T tion, which might not be the optimal one in terms of auto-
correlations. In this section, we present supplementary strat-
: ) egies aiming at locating more efficient solutions. We note
0 0.5 1 that these strategies are not specific to the generalized di-
ht) rected loop scheme presented in the previous sections, but

oo Heat Bath can also be used to optimize the standard directed loop ap-
=—= Standard directed loops proach[12,13.
o———o Generalized directed loops

1000 -

500

A. Supplementary strategies

Apart from the “bounce” path, where the worm back-
h (J) tracks, there are three other paths that a worm can take across
a vertex. We denote these other paths as “jump,” “straight,”
FIG. 13. (Color onling Autocorrelation times for the uniform a@nd “turn”[24]. See Fig. 15 for an illustration of these defi-
magnetization, measured using the heat bath algorithm, standafitions.
directed loops, and generalized directed loops for=64 sites Once the bounces have been minimized or even elimi-
spin-2 antiferromagnetic Heisenberg chain in a magnetic fiedd ~ nated, one might consider the effects of the remaining three
B=64/J. The inset shows on a larger scale the autocorrelation timepaths of the worm-scattering process on the autocorrelation
using directed loops at small values of the field. times. A practical means of doing so is as follows: First, we
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TABLE |. Autocorrelation times for the uniform magnetization

(my), the staggered magnetizati()ms), and the energyr) for the
Straight generalized directed loop algorithm applied td.a64 sites spin-

3/2 XY chain in a magnetic field=0.6 at3=64/J, obtained using
algorithms where supplementary strategies have been used after

minimization of bounces, as explained in the text, ée13/4J.

Supplementary strategy ™ ™, TE
faW.WaWAW.Wa'l L
[/ BRI EVEEEN) Maximize jump 2.9 20.4 6.4
Minimize jump 22.9 12.5 16.9
Maximize straight 29 6.4 9.4
Minimize straight 12.4 22.5 13.2

Maximize turn 45.7 22.4 25.2
| l l Tum Minimize turn 27 236 6.6

The subspace of bounce-free solutions contains algo-
rithms with autocorrelation times varying by about an order
of magnitude; this indicates that a solution taken from this

FIG. 15. (Color onling The different paths a worm can take gypspace without further guidance in general will not be the
across a vertex: “bounce,” “jump,” “straight,” or “turn.” optimal one.

From Table | we furthermore find that the optimal addi-
use linear programming to minimize the boun¢Bs. (29)]  tional strategy depends on the observable of interest. For
and to obtain for each vertex configuration the lowest Va|U€éxampIe, in order to minimize the autocorrelation times of
of the bouncgdenotedb, whereb can take a different value e energy, maximizing jumps is more efficient than maxi-

for each possible vertgxin a second step, we thempose  izing the straight path, whereas for the staggered magneti-
the condition,P, =b as a new constraint, in addition to EQs. ,4tion the two strategies perform opposite. This indicates
(26)-(28), S0 that any feasible SOIU“Q”.W',” b? in the optimal that in general it willnot be possible to obtain a unique
subspace with re§pect to bounce. ml_n|m|zat|on. optimal strategy beyond the minimization of bounces.

We then consider new optimization goals, each chosen™ v;inimizing bounces appears reasonable from an algorith-
from the six following possibilities: we could minimize or mic point of view, in order to prevent undoing previous

maximize the Jjump, straight or turn probab|l|t!es. The.Jumpchanges to a QMC configuration. However, autocorrelations
probabilities simply correspond to the scattering matrix ele e aiso related to the physical phases of the model under
MeNtsPy4, Pay, Pog, Pay, the straight probabilities 815, Pa1,  consideration and thus less well captured by a generic local
P24, Paz and t_he turn probabllltle_s B12, Po1, Paa Pag. FOr prescription for the worm propagation. In practice, the most
ea_lch Of the six d|_fferent strategies, we use linear PrograMagicient way to proceed for a given model will be to perform
ming with the addltlona_l constraint to minimize or Maximize gy 1ations for each different strategy on small systems, in
the sum of these matrix elements for each vertex configurgs yer 1 getermine the optimal strategy for the observable of
tion. Then we use the resulting scattering matrices in the SSqa et hefore performing production runs on larger systems.
al_g(_)rlthm. Note that due to the "."dd't'on"’.‘l constraint, we ex- ., qrder to illustrate the reduction of autocorrelation times
plicitly ensure that these algorithms will have a minimal y, 1 can pe achieved using this scheme, we finally consider
number of bounces. Doing so, we obtain six sets of scattefy spin-3/2XY chain throughout the whc;le region of mag-
ing_matrices, each corresponding to one of the above optimiz 4. fields,h=0.41—1.3), where we found the unexpected
zation goals. increase in the autocorrelation timésee Fig. 10 The re-
sulting minimal autocorrelation times for the magnetization
are shown in Fig. 16, along with the results for the autocor-

As an example of testing the efficiency of these strategiegelation times using heat bath, standard, and generalized di-
we consider thes=3/2 XY chain in the parameter regime, rected loops(without additional constraints Our results
where we found the generic solution of the generalized diclearly demonstrate that the optimal algorithm gives rise to
rected loop equations in Sec. VI A to perform worse than thanuch better performance, in particular curing the autocorre-
heat bath solution. In particular, we consider a chain withation time anomaly found in the previous section. We find
L=64, pJ=64, e=SJ2, and a value of the magnetic field that the optimal strategy depends on the magnetic field
h=0.60. strength: for example, we find the best strategy to(ibe

In Table | we present results for the autocorrelation timesnaximizing jumps for fields strengthis=0.4J, 0.5, 0.7,
of the magnetizatior(ry), staggered magnetizatiofry),  1.1J, and 1.3, (ii) minimizing turns forh=0.6J, 1.0J, and
and energy(7z) from using each of the six different strate- 1.2, and (iii) maximizing straight moves foh=0.8J and
gies. 0.9.

B. Results
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30 T T T T

20

o——o Heat Bath

o——a Standard directed loops FIG. 16. (Color online Autocorrelation times

o—= Generalized directed loops for the uniform magnetization, measured using
Optimal” solution heat bath, standard directed loops, generalized di-

rected loops, and the optimal soluti¢see texk

for aL=64 sites spin-3/XY chain in a magnetic

field h at B=64/J, for e=3/4J.

10

0.4 0.6 0.8 1 1.2
h (J)
VIIl. CONCLUSION efficiency of QMC algorithms beyond the directed loop

scheme? In our understanding of their work, the authors of

In this paper we presented a generalized approach to thet 15g] propose taalwayskeep a nonzero bounce probabil-
construction of directed loops in quantum Monte Carlo SiMU5y 15 vertices with the largest weight. They then provide a

lations. Viewing the worms ends not as artificial d'scom'n”"ﬁrecise form of the scattering matrices. In RE3], Syl-

ties, but as phyS|c_aI operators W'th corresponding W¢|ghtsw asen also proposed to keep a nonzero bounce probability
arrived at generalizations of the directed loop equations. U

o ) . .~Jor the vertex with the largest weight in situations where he
ing linear programming techniques to solve these equationgy ot find bounce-free solutions. The main difference be-

we can avoid the analytical calculations needed in previoug, cen the approach of Pollet al. and Syljuésen thus con-
approaches an(_j arrive at a generic QMC algorithm. cerns the off-diagonal elements of the scattering matrix. As
The generalized directed loop equations allow bouncegy, v explicitly in Sec. VII, the off-diagonal matrix ele-
free solutions in larger regions of.parameter space, but Meqnents strongly affect the efficiency of the algorithm in a
surements of autocorrelation times for several mOdeli)arameter- and observable-dependent way. This indicates

showed that minimizing bounces is not always sufficient ¢ there will be no simple rule for the construction of the

obt\?vm T}n ef]fluent algorltgm.d.ﬁ f furth .scattering matrices, which perform optimal in all cases.
e therefore proposed a different means of further opti-g;ijar conclusions were reached in RE28]. A full SSE

mizing directed loop algorithms inside the subspace Ofode featuring the implementation of the generalized di-

bounce-minimal solutions. Additional strategies were Prétacted loop technique described in the present paper is avail-

sented, the use of which improves the performance up to a?ble as part of the ALPS projef29]
order of magnitude. However, the optimal strategy in general '

depends on both the modahd the observable of interest.
One therefore needs to perform preliminary simulations to
find out which supplementary strategy is optimal for a given We thank K. Harada, N. Kawashima, A. Sandvik, E. Sg-
problem before turning to long calculations, in order to ac-rensen, O. Syljudsen, and S. Todo for fruitful discussions.
count for the physical phase realized in the specific paramThe simulations were done using the ALPS librafi2g] and
eter regime. performed on the Asgard Beowulf cluster at ETH Zurich.

A recent papef28] discussed issues similar to the onesThis work is supported by the Swiss National Science Foun-
addressed here: can one obtain strategies that improve tldation.
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