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Efficient quantum Monte Carlo update schemes calleddirected loopshave recently been proposed, which
improve the efficiency of simulations of quantum lattice models. We propose to generalize the detailed balance
equations at the local level during the loop construction by accounting for the matrix elements of the operators
associated with open world-line segments. Using linear programming techniques to solve the generalized
equations, we look for optimal construction schemes for directed loops. This also allows for an extension of the
directed loop scheme to general lattice models, such as high-spin or bosonic models. The resulting algorithms
are bounce free in larger regions of parameter space than the original directed loop algorithm. The generalized
directed loop method is applied to the magnetization process of spin chains in order to compare its efficiency
to that of previous directed loop schemes. In contrast to general expectations, we find that minimizing bounces
alone does not always lead to more efficient algorithms in terms of autocorrelations of physical observables,
because of the nonuniqueness of the bounce-free solutions. We therefore propose different general strategies to
further minimize autocorrelations, which can be used as supplementary requirements in any directed loop
scheme. We show by calculating autocorrelation times for different observables that such strategies indeed lead
to improved efficiency; however, we find that the optimal strategy depends not only on the model parameters
but also on the observable of interest.
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I. INTRODUCTION

Monte Carlo sMCd simulations are powerful numerical
tools for high-precision studies of many-body systems, in
both the classical and quantum regimes. Especially near
second-order phase transitions, where physical length scales
diverge, it is essential to simulate large systems, which has
become possible due to significant algorithmic advances
within the last 15 years.

In classical simulations, conventional MC algorithms
sample the canonical partition function by making local con-
figurational updates. While being straightforward, this ap-
proach turns out to slow down simulations near phase tran-
sitions and gives rise to long autocorrelation times in the
measurement of the relevant physical observables. For clas-
sical spinlike systems, this critical slowing down can be
overcome using cluster algorithmsf1g, which update large
clusters of spins in a single MC step.

The generalization of these nonlocal update schemes to
the case of quantum Monte CarlosQMCd simulations was
initiated by the development of the loop algorithm in the
world-line representationf2,3g. This very efficient method
has been used in many studies, where it allowed the simula-
tion of large systems at very low temperatures. In the origi-
nal formulation seither in discretef2g or continuousf4g
imaginary timed, the loop algorithm, however, has a major
drawback: to work efficiently, its application is restricted to
specific parameter regimes. In the case of quantum spin
models, for example, it suffers from a severe slowing down
upon turning on a magnetic fieldf5g.

This problem can be circumvented by performing cluster
constructions in an extended configuration space, which in-
cludes world-line configurations with two open world-line
fragmentsf6g, representing physical operators inserted into a

MC configuration. The resulting worm algorithmf6g pro-
ceeds by first creating a pair of open world-line fragmentssa
wormd. One of these fragments is then moved through space-
time, using local Metropolis or heat bath updates, until the
two ends of the worm meet again. This algorithm thus con-
sists of only local updates of worm ends in the extended
configuration space, but can perform nonlocal changes in the
MC configurations. The cluster generation process of the
worm algorithm allows for self-intersections and backtrack-
ing of the worm, which might undo previous changes. While
not being as efficient as the loop algorithm in cases with
spin-inversion or particle-hole symmetry, the great advantage
of the worm algorithm is that it remains efficient in an ex-
tended parameter regime—e.g., in the presence of a magnetic
field for spin modelsf5g.

An alternative QMC approach, which is not based upon
the world-line representation, is the stochastic series expan-
sion sSSEd f7g, a generalization of Handscomb’s algorithm
f8g for the Heisenberg model. While in the original imple-
mentationf7g local MC updates were used, Sandvik later
developed a cluster update, called the operator-loop update
for the SSE representationf9g, which allows for nonlocal
changes of MC configurations. Within this SSE approach one
can efficiently simulate models for which the world-line loop
algorithm suffers from a slowing down. Furthermore, loop
algorithms are recovered in models with spin-inversion or
particle-hole symmetryf3g. In fact, the two approaches—
world-line and SSE QMC—are closely relatedf10,11g.

Recently, it has been realized that the rules used to con-
struct the operator loops in the original implementationf9g
were just one possible choice and that one can consider gen-
eralized rules, which give rise to more efficient algorithms
f12,13g. This approach led to the construction of the “di-
rected loop” update scheme by Syljuåsen and Sandvik, first
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for spin-1/2 systemsf12g. Later it was adapted to general
spin-S models by Harada and Kawashima through a coarse-
grained picture of the loop algorithmf14g. Using a Holstein-
Primakov transformation of the large spin-S algorithm, a
coarse-grained loop algorithm for soft-core bosonic models
was also developedf15g. The improvements achieved using
the directed loop approach have been demonstrated in vari-
ous recent studiesf16–19g. For a recent review of nonlocal
updates in QMC, see Ref.f20g.

In this work, we show that the equations which determine
the directed loop construction allow for additional weight
factors, which were not considered by Syljuåsen and Sandvik
f12g or used inf13,17g. We explain how these weight factors
naturally arise from a formulation of the directed loop con-
struction within the extended configuration space. Instead of
viewing the worm ends as link discontinuitiesf9g we con-
sider them to represent physical operators with in general
nonunity matrix elementsf6,12g. Taking these natural weight
factors into account and numerically optimizing solutions to
the generalized directed loop equations, we are able to con-
struct algorithms which display larger regions in parameter
space where the worm propagation is bounce free; i.e., a
worm never backtracks. This numerical approach allows for
the implementation of directed loop algorithms in a generic
QMC simulation code, which is not restricted to specific
models. In particular, it provides directed loop algorithms for
spin-S and soft-core boson systems directly using the nu-
merical solution, without coarse graining, or using the split-
spin representation and Holstein-Primakov transformation
f14,15g.

Performing simulations and calculating autocorrelation
times of different observables, we find that minimizing
bounces does not necessarily imply more efficient algo-
rithms. In certain cases, the generalized directed loop algo-
rithm presented in this paper has superior performances to
the standard directed loop scheme, but in other cases it does
not. We identify the nonuniqueness of bounce-minimized so-
lutions as the source of this observation: in the general case
there are many solutions to the directed loop equations with
minimal bounces, which, however, do not lead to the same
performance of the algorithm.

To further improve the algorithm, we thus propose various
additionalstrategies, which select out certain solutions in the
subset of those which minimize bounces. These additional
strategies can also be used in the standard directed loop ap-
proach. Calculating again autocorrelation times with these
different strategies, we indeed find that the efficiency can be
further improved largely. However, we find that the specific
strategy that gives rise to the best performances depends on
the specific Hamiltonian and on the observable of interest.
The conclusion we reach from these results is that in most
cases short simulations on small systems are needed in order
to identify the optimal strategy before performing production
runs.

Throughout this work, we use the SSE QMC schemef7,9g
in order to present our framework, since it appears to be the
more natural approach to many problems. However, the
ideas presented here can as well be implemented within the
path integral approachf12g.

The outline of the paper is as follows: We review in Sec.
II the SSE method and the operator-loop update scheme.

Then we introduce the generalized directed loop equations in
in Sec. III. In Sec. IV we show how to numerically solve
these equations in order to obtain directed loop schemes with
minimized bounces using linear programming techniques. In
Sec. V we present algorithmic phase diagrams obtained
within the framework proposed here and compare them with
those obtained using previous directed loop schemes. We dis-
cuss in Sec. VI results on autocorrelation times obtained
from the simulation of the magnetization process of various
quantum spin chains. Our results indicate that minimizing
bounces alone does not necessary lead to reduced autocorre-
lations of physical observables. We therefore introduce in
Sec. VII supplementary strategies in order to improve the
performance of directed loop algorithms and present autocor-
relation times obtained using these additional strategies. We
finally conclude in Sec. VIII.

II. STOCHASTIC SERIES EXPANSION

A. Presentation of the method and notations

The SSE QMC method was first introduced by Sandvik
and Kurkijärvi f7g. In this original implementation local MC
updates schemes were employed. Later Sandvik developed
the operator-loop updatef9g, which has recently been im-
proved by employing the idea of directed loopsf12g. Before
discussing our scheme, which steams from an extension of
these ideas, we review in this section the formulation of the
SSE method and the extended configuration space interpre-
tation of the operator-loop update.

To develop the SSE QMC scheme, we start from a high-
temperature series expansion of the partition function

Z = Tre−bH = o
n=0

`

o
a

bn

n!
kaus− Hdnual, s1d

whereH denotes the Hamiltonian andhualj a Hilbert space
basis of the system under consideration. The SSE approach
aims to develop an importance sampling framework for the
terms contributing to the partition function for a given tem-
peratureT=1/b.

The resulting Monte Carlo scheme can be applied to a
large variety of Hamiltonians, including multiple-particle ex-
change and long-ranged interaction terms. Here we restrict
ourselves to models with on-site and short-ranged two-site
interactions in order to simplify the following discussion.

The Hamiltonian can then be decomposed into a sum of
bond Hamiltonians:

H = − o
b=1

M

Hb, s2d

where each termHb is associated with one of theM bonds of
the lattice,b=(isbd , jsbd), connecting lattice sitesisbd and
jsbd.

We assume that all contributions toH involving on-site
terms have been expressed as additional two-site terms
within the Hb. For example, a chemical potential term for
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two sites, mni and mnj, can be added toHsi,jd as mskini

+k jnjd, with suitable constantski, k j, assuring the sum over
all such terms recovers the initial sum.

Inserting this decomposition of the Hamiltonian into the
partition function we obtain

Z = o
n=0

`

o
hCnj

o
as0d,. . .,asLd

bn

n! pp=1

L

kaspduHbp
uasp − 1dl, s3d

where hCnj denotes the set of all concatenations ofn bond
HamiltoniansHb, each called an operator string. We have
furthermore inserted setsuaspdl of Hilbert space basis vec-
tors between each pair of consecutive bond Hamiltonians.
Thereforeuaspdl is the state that results after applying the
first p bond Hamiltonians in the operator string to the initial
stateuas0dl:

uaspdl = p
j=1

p

Hbj
uas0dl. s4d

Furthermore,uasLdl= uas0dl, reflecting the periodicity in the
propagation direction. In the following we also denote by
uaispdl the local state at sitei given the state vectoruaspdl, so
that uaspdl= ua1spdl ^ ua2spdl ^ ¯ ^ uaNs

spdl, where Ns de-
notes the number of lattice sites.

For a finite system and at finite temperature the relevant
exponents of this power series are centered around

knl ~ Nsb. s5d

Hence we can truncate the infinite sum overn at a finite
cutoff lengthL~Nsb without introducing any systematic er-
ror for practical computations. The best value forL can be
determined and adjusted during the equilibration part of the
simulation—e.g., by settingL. s4/3dn after each update
step.

In order to retain a constant length of the operator strings
in the truncated expansion of Eq.s3d we insertsL−nd unit
operators Id into every operator string of lengthn,L and
defineH0=Id. Taking the number of such possible insertions
into account, we obtain

Z = o
n=0

L

o
hCLj

o
as0d,. . .,asLd

bnsL − nd!
L! p

p=1

L

kaspduHbp
uasp − 1dl,

s6d

wheren now denotes the number of nonunity operators in
the operator stringCL. Each such operator string is thus
given by an index sequenceCL=sb1,b2, . . . ,bLd, where on
each propagation levelp=1, . . . ,L either bp=0 for an unit
operator or 1øbpøM for a bond Hamiltonian.

Instead of evaluating all possible terms in the expansion
of Eq. s6d, in a SSE QMC simulation one attempts to impor-
tance sample over all contributions to Eq.s6d according to
their relative weight. In order to interpret these weights as
probabilities, all the matrix elements of each bond Hamil-
tonianHb should be positive or zero. Concerning the diago-
nal part of the Hamiltonian, one can assure this by adding a
suitable constantC to each bond Hamiltonian. The constant
C can be decomposed asC=C0+e, whereC0 is the minimal

value for which all diagonal matrix elements are positive,
and an additional offseteù0. The effects of a finite value for
e on the efficiency of the SSE algorithm will be discussed in
Sec. V.

For the nondiagonal part of the Hamiltonian an equally
simple remedy does not exist. However, if only operator
strings with an even number of negative matrix elements
have a finite contribution to Eq.s6d, the relative weights are
again well suited to define a probability distribution. One can
show that this is in general the case for bosonic models,
ferromagnetic spin models, and antiferromagnetic spin mod-
els on bipartite lattices.

Given the positivity of the relative weights, one then has
to construct efficient update schemes that generate new con-
figurations from a given one. Within SSE simulations that
employ operator-loop updates, each Monte Carlo step con-
sists of two parts. In the first step attempts are made to
change the expansion ordern by inserting and removing the
number of unit operators. During this update step, all propa-
gation levelsp=1, . . . ,L are traversed in ascending order. If
the current operator is an unit operatorH0, it is replaced by a
bond Hamiltonian with a certain probability which guaran-
tees detailed balance. The reverse process—i.e., substitution
of a bond Hamiltonian by a unit operator—is only attempted
if the action of the current bond Hamiltonian does not
change the propagated state—i.e., if
uaspdl= uasp−1dl—since otherwise the resulting contribution
to Eq. s6d would vanish.

The acceptance probabilities for both substitutions, as de-
termined from detailed balance, are

PsH0 → Hbd = minF1,
MbkaspduHbuasp − 1dl

L − n
G ,

PsHb → H0d = minF1,
sL − n + 1dduaspdl,uasp−1dl

MbkaspduHbuasp − 1dl
G .

The second part of a MC update step consists of perform-
ing a certain fixed number of operator-loop updates, modify-
ing the configuration obtained from the preceding diagonal
update. Keeping the expansion ordern unchanged, attempts
are made to change the intermediate state vectorsuaspdl.
Most importantly, the employed cluster updates significantly
reduce autocorrelations between successive MC configura-
tions.

The operator-loop update makes use of a representation
for the operator stringCL as a quadruply linked list of ver-
tices, each vertex being associated with a nonunity operator
in the operator string. To construct this representation, con-
sider a propagation levelp with a corresponding bond
HamiltonianHbp

. Since the bondbp connects two-lattice sites
isbpd and jsbpd, we can represent it by a four-leg vertex,
where the legs carry the local states on sitesisbpd and jsbpd,
given byuaisbpdsp−1dl, respectivelyua jsbpdsp−1dl, before and
by uaisbpdspdl, respectivelyua jsbpdspdl, after the action of the
bond HamiltonianHbp

; see Fig. 1. We denote the direct prod-
uct of the four states on the legs of a vertex by
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S = uss1dl ^ uss2dl ^ uss3dl ^ uss4dl, s7d

so that on the propagation levelp the vertex state is

Sp = uaisbpdsp − 1dl ^ ua jsbpdsp − 1dl ^ uaisbpdspdl

^ ua jsbpdspdl.

In general, given the stateuSl of a vertex with an associated
bondb, we define the weight of this vertex by

Wsb,Sd = fkss3du ^ kss4dugH̃bfuss1dl ^ uss2dlg, s8d

whereH̃b is the restriction of the bond HamiltonianHb, act-
ing on the states at sitesisbd and jsbd. With this definition,
the vertex weight for a vertex at propagation levelp equals
its contribution to the matrix element in Eq.s6d:

Wsbp,Spd = kaspduHbp
uasp − 1dl. s9d

For each legl =1, . . . ,4 of the vertex at propagation level
p there is a legl8 of another vertex at some propagation level
p8, for which there is no other vertex in between the propa-
gation levelsp andp8 acting on the corresponding site of the
lattice. In particular, for a legl =1,2 s3, 4d, we find the cor-
responding leg, by moving along the decreasingsincreasingd
propagation levels, until we find the first vertex and legl8,
corresponding to the same lattice site. Doing so, the periodic
boundary of the propagating state must be taken into ac-
count, so that upon moving beyondp8=L we return atp8
=0. Each leg then has an outgoing and incoming link, such
obtaining a bidirectional linked list for the vertices. In fact,
this vertex list contains the complete information about the
operator string. The operator-loop update performs changes
in this vertex list along closed loops, resulting in a new op-
erator string and basis state—i.e., a new MC configuration.

B. Construction of operator loops

Each operator loop results from the stepwise construction
of a closed path through the vertex list, which represents
changes on the leg states and the bond-operator content of
the visited vertices. For the remainder of this work we call
the path generated in the vertex list aworm, which upon
closure constitutes the operator loop.

During construction the worm is extended at one end,
called thehead, whereas the other endscalled taild remains
staticf21g. The body of the worm represents part of the new
configuration. The goal of the following discussion is to find
rules for the motion of the worm head, which lead to effi-
cient updates of the operator string. In analogy with the
worm algorithm f6g we think of each intermediate worm
configuration as being defined in an extended configuration
space, which includes operator strings that in addition to
bond-operators contain source terms for the worm ends. For
example, in a bosonic model these would be the operatorsai
or ai

†, which decrement or increment the local occupation
number. For spin models, these operators would beSi

+ and
Si

−. In fact, this interpretation suggests to associate weight
factors with both the creationsinsertiond and closuresre-
movald of the worm, as well as the motion of the worm head,
depending on the action of the corresponding operatorssai
andai

† in the bosonic exampled.
Within this view the creation of a worm corresponds to

the insertion of two operators, which we denoteA0 and A0
†

sA0
† being the Hermitian conjugate ofA0d. One operator

stands for the worm head, the other the tail. We choose to
insert these two operators randomly, either asA0A0

† fFig.
2sadg or asA0

†A0 fFig. 2sbdg at a random point in the operator
list, between twosnonidentityd vertices with a certain prob-
ability, which will be specified below. Furthermore, the state
of the vertex legs at the insertion point is denoteds1.

Then we randomly choose to move one of the two opera-
tors, which thus becomes the head of the worm. The other
operator remains at the insertion position, constituting the
worm’s tail. The worm head is associated with a transforma-
tion T0 acting on the states1 along the direction of propaga-

tion, so thats1 is changed toT̃0ss1d, whereT̃ssd denotes the
normalized statef22g:

FIG. 1. The vertex stateSp is equal to the direct product of the
local states on its four legs:Sp= uss1dl ^ uss2dl ^ uss3dl ^ uss4dl.

FIG. 2. The two possible ways of inserting a pair of operators on
a states: sad insertion of a pairA0A0

†, sbd insertion of a pairA0
†A0.
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T̃ssd =
Tssd

iTssdi
. s10d

For example, consider the case where we insert a pair
A0

†A0 fFig. 2sbdg. If we choose to move the operatorA0 along
the positive direction of propagation, this corresponds to the
case where a transformationT0=A0

† operates on the states1
in the positive propagation directionfFig. 3sadg. If we choose
to instead propagate the operatorA0

† in the negative direction,
this corresponds to a transformationT0=A0

† on the states1,
but now in the negative direction of propagationfFig. 3sbdg.
More generally speaking, the transformationT performed on
the state depends on the propagated operatorA and on its
direction of propagation in the following way:

T = HA† for positive direction of propagation,

A for negative direction of propagation.
J

s11d

A proposed insertion of the wormsthe pair of operatorsd is
accepted with a probabilityPinsertsT0,s1d, which depends on
the effective transformationT0 and the states1. This insertion
probability is determined by the requirements of detailed bal-
ance and will be discussed in Sec. III C 1.

Once these initial decisions are made, the worm head is
propagated to the nextsnonidentityd vertexV1 in the operator
string along the current direction of propagation. The worm
enters vertexV1 on the entrance legl1P f1,2,3,4g, which is
currently in the states1 before the passage of the worm and

will be modified toT̃0ss1d by the action of the worm head. At
the vertexV1 the worm chooses an exit legl18 according to
certain probabilities as discussed in the next section. De-
pending on the particular exit legl18 sid the direction of the
worm’s propagation may change,sii d the operator corre-
sponding to the worm head may be hermitian conjugated
sA→A†d or stay the samesA→Ad, and as a consequence of

sid, sii d, and Eq.s11d the type of transformation performed by
the worm head may be invertedsT→T†d or remain un-
changedsT→Td.

We denote the new operator that is carried by the worm
head after passage ofV1 by A1 and the corresponding trans-
formationT1. The state of the exit legl18 is denoteds18 before

the passage of the worm andT̃1ss18d after the worm action.
For general models the modificationssid andsii d can occur

independently. For a model with conservation lawsse.g., of
the number of particles for bosonic models or of magnetiza-
tion for spin modelsd, these lead to the following restriction:
if the direction of propagation stays constant, the operator
remains the same, so thatA0→A1=A0. Otherwise, it is
inverted—i.e.,A0→A1=A0

†.
After the worm head leaves the first vertexV1 from the

exit leg l18 it continues on to the second vertexV2, entering on
leg l2. This intervertex propagation of the worm head pro-
ceeds along the connections within the quadruply linked ver-
tex list.

The state on legl2 before the worm passes through iss2

=s18 and will be transformed toT̃1ss2d upon passage. The
worm head leavesV2 from exit leg l28, where the leg state

changes froms28 to T̃2ss28d, T2 being the transformation which
corresponds to the new operatorA2 associated with the worm
head after it passedV2.

This process continues until the worm exits a vertexVN
from a leg lN8 and from there returns to the insertion point.
There are two possibilities for the worm head to approach
the insertion point: either the final transformationTN is the
same asT0 or TN=T0

†. In the first case we call the resulting
operator loop a “normal” loop, otherwise a “bounce” loop
sFig. 4d. The bounce loop corresponds to the case in which
the order of the operators after the return of the head to the
tail has the same orientation as directly after insertionfFig.
4sadg. For a normal loop the relative order of the operators is
invertedfFig. 4sbdg.

In the method presented there, the worm always stops
when it has reached its starting point. We note that there are

FIG. 3. The two possibilities of moving the worm after insertion
of an initial pair A0

†A0. sad The operatorA0 is movedupwards in
propagation direction. As a result, the transformation induced on the

states is T0=A0
† fthe new state isT̃0ssd=Ã0

†ssdg. sbd The operatorA0
†

is moveddownwardsin negative propagation direction. The trans-
formation induced on the states is againT0=A0

† fthe new state

beingT̃0ssd=Ã0
†ssdg. Dashed horizontal lines indicate where the op-

erators were before they were moved.

FIG. 4. The two possible closings of a worm. The initial pair
inserted wasA0

†A0 fFig. 2sbdg and the first move the propagation of
A0 upward in propagation directionfFig. 3sadg, so that the initial
transformation isT0=A0

†. sad For a bounce loop, the final transfor-
mation TN=T0

†. sbd For a normal loop, the final transformationTN

=T0. The dashed horizontal line indicates the initial position of the
operatorA0.
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other schemesf14,15g where the worm does not necessary do
so, but continues with a certain probability. In Sec. III C 3,
we discuss the efficiency of our choice.

III. DIRECTED LOOPS

A. Generalized directed loops equations

For the actual construction of the operator loop we need
to specify the probabilities for choosing exit legs at each
visited vertex. In this section, we focus on how to derive
generalized equations for these probabilities.

Consider a worm entering a vertexVi, which is entirely
specified by the values of the states at its four legs, as well as
the lattice bondbi corresponding to this vertexsherebi de-
notes the bond type of theith vertexd. The state of the vertex
before the entrance of the worm isSi = uss1dl ^ uss2dl
^ uss3dl ^ uss4dl sFig. 1d.

The worm entersVi from the entrance legl i and exits
from leg l i8. The states at these legs before the worm passes
are denotedsi and si8, respectively—i.e.,si = usisl idl, and si8
= usisl i8dl. Both states are changed by the worm’s passage and

becomeT̃i−1ssid andT̃issi8d, respectively. Correspondingly, the

total state of this vertex becomesS̄i = us̄s1dl ^ us̄s2dl
^ us̄s3dl ^ us̄s4dl, where us̄isldl= usisldl, except for us̄isl idl
=T̃i−1ssid, and us̄sl i8dl=T̃issi8d.

We definePbi
sSi ,Ti−1→Ti , l i → l i8d to be the conditional

probability of exiting on legl i8, given that the worm head
enters on legl i. This “scattering” probability can in general
depend on the bond typebi, the transformation of the worm
head beforesTi−1d and aftersTid passingVi, the stateSi, and
on the actual path of the worm through this vertex—i.e., the
legs l i and l i8. For a model with conservations laws,Ti is
implicitly given by Ti−1 and l i and l i8, as discussed in the
previous section. For clarity we illustrate our notations in
Figs. 5 and 6.

What are the possible values for the scattering probabili-
ties so that the resulting operator-loop construction fulfills
detailed balance? In the original operator-loop implementa-

tion f9g, Sandvik showed that a generic solution for any
model is to set Pbi

sSi ,Ti−1→Ti , l i → l i8d proportional to

Wsbi ,S̄id—i.e., the weight of the vertex after the passage of
the wormsthis solution is often referred to as the heat bath
solutiond. However, this choice turns out to be inefficient in
many cases, because of “bounce” processessi.e., the worm
head exits a vertex from the same leg from which it entered
the vertexd f12g. An algorithm which minimizes the number
of these bounce processes is often more efficient
f12–14,17,18g. In this context, Syljuåsen and Sandvik pro-
posed the “directed loop” updatef12g, with probabilities
Pbi

sSi ,Ti−1→Ti , l i → l i8d chosen as to minimize or even
eliminate bounces. These probabilities are derived analyti-
cally for spin-1/2 models in Ref.f12g, and a more general
framework to obtain them is given in Ref.f13g.

The optimizationswith respect to the bounce minimiza-
tiond of the scattering probabilities has to be performed under
the constraint of fulfilling detailed balance for the resulting
operator-loop update. Syljuåsen and Sandvik showed that in

FIG. 5. sColor onlined Worm
entering theith vertex during its
construction.

FIG. 6. sColor onlined Worm leaving theith vertex during its
construction.
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order to fulfill detailed balance of the directed-loop update
the following condition on the scattering probabilities is suf-
ficient:

Wsbi,SidPbi
sSi,Ti−1 → Ti,l i → l i8d

= Wsbi,S̄idPbi
sS̄i,Ti

† → Ti−1
† ,l i8 → l id, s12d

which we refer to as thelocal detailed balance condition,
since it demands detailed balance during each step of the
worm head propagation. The original algorithm by Sandvik

f9g, where Pbi
sSi ,Ti−1→Ti , l i → l i8d~Wsbi ,S̄id, obviously

fulfills this condition. With this choice, the probabilities do
not depend on the entrance legl i. This is not true for the
bounce-minimized solution, which by definition results in
direction-dependent scattering probabilities for the directed
loop update.

The idea behind the work presented here is to consider the
motion of the worm head in the extended configuration
space. We show that this leads to a general set of equations
for the scattering probabilities, which also guarantee detailed
balance. These generalized equations have solutions that al-
low us to further reduce the bounce probabilities and to even
eliminate bounces in large regions of parameter space.

If we consider the worm construction process in the ex-
tended configuration space, it appears natural to view the
worm head as an operator acting on the local states of the
world-line configuration and to assign the corresponding ma-
trix element as an additional weight factor to its propagation.

The worm head matrix element iskT̃ssduTusl. Let us denote

by fsT,sd;kT̃ssduTusl the additional worm weight factor that
will be used in the generalized equations. HereT denotes the
transformation corresponding to the worm head ands the
local state of the world-line configuration, where the worm
head acts. Even thoughfsT,sd is alwaysequal to the worm
head matrix element in the scheme presented in this paper,
we use this notation such that one can recover the standard
directed loop framework by puttingfsT,sd equal to 1 in all
equations given below.

With this definition of fsT,sd, the following Hermiticity
condition is then fulfilled for allT ands:

fsT†,T̃ssdd = fsT,sd. s13d

We also denote the weight of the worm head before it enters
the vertexVi by fsTi−1,sid, depending on both the transfor-
mation Ti−1 and the statesi. In the extended configuration
space, the local detailed balance equation then reads

fsTi−1,sidWsbi,SidPbi
sSi,Ti−1 → Ti,l i → l i8d

= f„Ti
†,T̃issi8d…Wsbi,S̄idPbi

sS̄i,Ti
† → Ti−1

† ,l i8 → l id,

s14d

which constitutes our generalized directed loop equation.
Note that we recover the previous scheme of Syljuåsen

and Sandvik upon settingfsT,sd=1 for all T and s in this
equation and in those given below. In the following section,

we prove that Eq.s14d indeed guarantees detailed balance of
the operator-loop update, as long as the worm weightfsT,sd
fulfills the Hermiticity condition, Eq.s13d.

B. Proof of detailed balance

The following proof of detailed balance uses theworm-
antiworm construction principlef18,23g. We first calculate
the probability to create a wormw, hitting N vertices before
coming back to the insertion point:

Pw = PinitPinsertsT0,s1dp
i=1

N

Pbi
sSi,Ti−1 → Ti,l i → l i8d, s15d

wherePinit denotes the uniform probability of choosing the
insertion point in the operator string.

Now we consider anantiworm w̄, traversing exactly the
path created byw but in the reverse direction. The antiworm
acts on the configuration that has been obtainedafter passage
of the wormw. The antiworm thus completely undoes the
action of the wormw, leading back to the configuration prior
to the insertion of the wormw. The antiworm is inserted at
the same place asw, and its initial head operator is exactly
the inverse of the last worm head operator, so that its inser-

tion probability isPinsert(TN
† ,T̃NssN8 d). The probability to cre-

ate the antiworm is thus

Pw̄ = PinitPinsert„TN
†,T̃NssN8 d…p

i=1

N

Pbi
sS̄i,Ti

† → Ti−1
† ,l i8 → l id.

s16d

The ratio of the two probabilities is

Pw/Pw̄ =
PinsertsT0,s1d

Pinsert„TN
†,T̃NssN8 d…

p
i=1

N Pbi
sSi,Ti−1 → Ti,l i → l i8d

Pbi
sS̄i,Ti

† → Ti−1
† ,l i8 → l id

.

s17d

Using Eq.s14d, we obtain

Pw/Pw̄ =
PinsertsT0,s1d

Pinsert„TN
†,T̃NssN8 d…

p
i=1

N
fsTi−1,sidWsbi,Sid

f„Ti
†,T̃issi8d…Wsbi,S̄id

.

s18d

Sincesi8=si+1 we obtain, using Eq.s13d,

f„Ti
†,T̃issi8d… = fsTi,si+1d

for all i ,N. For a “normal” loop, we furthermore haveTN
=T0 andsN8 =s1, so that

f„TN
†,T̃NssN8 d… = fsT0,s1d,

again using Eq.s13d. In case of a “bounce” loop, whereTN

=T0
† and sN8 =T̃0ss1d, we obtain the same relation, since

f(T0,T̃0
†sT̃0dss1d)= fsT0,s1d.

The factors offsT,sd thus exactly cancel each other in the
numerator and denominator of Eq.s18d, and we obtain
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Pw/Pw̄ =
PinsertsT0,s1d

Pinsert„TN
†,T̃NssN8 d…

p
i=1

N
Wsbi,Sid

Wsbi,S̄id
. s19d

Detailed balance is thus fulfilled, provided

PinsertsT0,s1d = Pinsert„TN
†,T̃NssN8 d…. s20d

For a “bounce” loop, whereTN
† =T0 and T̃NssN8 d=s1, this

condition is always fulfilled. In case of a “normal” loop,
whereTN=T0 andsN8 =s0, we need for Eq.s20d to hold, that

Pinsert„T0
†,T̃0ss1d… = PinsertsT0,s1d. s21d

In other words, the probability to insertsat the same placed
an antiworm that will undo exactly what a worm just did
must be equal to the probability used to insert this original
worm. If this condition is fulfilled for all transformationsT0
and all possible statess1, we obtain a detailed balanced
operator-loop update.

C. Operators, insertion probabilities, worm weights,
and Green’s functions

Let us be more specific now and discuss the kind of op-
eratorsA0 that can be used as operator insertions and which
corresponding insertion probabilities fulfill Eq.s21d. We fo-
cus on two cases: quantum spin-S and soft-core bosonic sys-
tems.

For a quantum spin-Ssystem, the local state at a given site
is given by the projection of the spin value at that site—e.g.,
onto thez axis. We denote this projection bym which can
take 2S+1 values in the range −S,−S+1, . . . ,S−1,S.

For bosonic systems, the local state is given by the num-
bern of bosons at the site. If we truncate the Hilbert space by
restricting the number of bosons per site to a maximum value
Nmax, n can take integer values in the range 0, . . . ,Nmax.

What are the possible operatorsA0 to be used in the op-
erator pair insertion for these models? In many cases, a good
choice is to construct so called ±1 worms:A+1 s−1d worm
head acting on states changes it tos+1 ss−1d. The operators
A0 associated with the worm ends are then simply the cre-
ation sannihilationd operatorsa† sad for bosons and the lad-
der operatorsS+ sS−d for spins, respectively.

1. Insertion probabilities

For ±1 worms, Eq. s21d becomes Pinsertsa,n+1d
=Pinsertsa†,nd in the case of bosonic models and
PinsertsS−,m+1d=PinsertsS+,md for spin models.

For a spin-Smodel, we cannot insert a +1s−1d worm onto
a given initial state withm=S sm=−Sd. Since we always
want to create a worm in all other cases, we propose the
following insertion probabilities:

PinsertsS±,md =
1 − dm,±S

2
. s22d

If S=1/2, we usePinsertsS± ,md=dm,71/2 instead, so always
inserting a worm.

For a soft-core bosonic model limiting the maximum
number of bosons per site toNmax, we equivalently use

Pinsertsa†,nd =
1 − dn,Nmax

2
,

Pinsertsa,nd =
1 − dn,0

2
. s23d

For hard-core bosonssNmax=1d, we instead use
Pinsertsa†,nd=dn,0 and Pinsertsa,nd=dn,Nmax

, thus always in-
serting a worm.

These insertion probabilities differ from the weight as-
signed to the operators in the extended configuration space—
namely, the matrix elements of these operatorsssee Sec.
III C 2d. As suggested in Ref.f12g, it is possible to set

PinsertsT,sd proportional tokT̃ssduTusl, similar to the worm
algorithm f6g. Indeed, this choice satisfies Eq.s21d.

2. Worm weights

In the extended configuration space, where the worm head
is associated with an operator acting on the local state in the
world-line configuration, the worm weights are equal to the

matrix elements,fsT,sd;kT̃ssduTusl.
To be more specific, consider employing ±1 worms for a

spin model. ThenT can beS+ or S−, so we obtain

fsT,sd = fsS±,md = km± 1uS±uml = ÎSsS+ 1d − msm± 1d.

s24d

For a bosonic model with ±1 worms,T is eithera or a†

and thus

fsT,sd =H fsa†,nd = kn ± 1ua†unl = Îsn + 1d,

fsa,nd = kn ± 1uaunl = În.
J s25d

We note that the operators used herescorresponding to ±1
wormsd are not unique, as we can, for example, also employ
±2 or ±3 worms.

It is also possible that other choices of weights such that

fsT,sd is not equal tokT̃ssduTusl might lead to more efficient
algorithms. Indeed, in the proof of detailed balance, the only
requirement onfsT,sd is Eq. s13d. However, the above
choices naturally appear within the extended configuration
space and lead to algorithms with less bounces, as will be
shown below.

3. Stopping probability

We propose to always close a worm when the worm head
returns to the insertion point. It is possible, as noted in Refs.
f14,15g, to not necessary do so, but to offer the worm the
possibility to continue depending on the value of the final
state. As a consequence, the worm insertion probabilities
need to be changed accordingly, in order to retain detailed
balance. It is nota priori clear which approach results in a
more efficient algorithm. Only precise studies of autocorre-
lation times could answer this question for each specific
model and set of parameters, which is, however, well beyond
the scope of this work. Instead we present an intuitive argu-
ment, why we expect closing worms immediately to be more
efficient.
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The goal of using worm updates is the generation of large
nonlocal changes in each MC configuration, in order to deco-
rrelate two consecutive measurements. A precise quantifica-
tion of this decorrelation effect in terms of CPU time must
take into account the worm size. Making a long worm and
thus obtaining large decorrelation effects should grossly be
equivalent to making two short worms with only half the
decorrelation. However, if after the first encounter of the
initial point the worm has already resulted in large enough
decorrelation, it becomes less meaningful to continue this
worm, as we can already perform an independent measure-
ment instead of spending more CPU time for the construc-
tion of a longer worm.

4. Measuring Green’s functions

With the above choices, the measurement of Green’s
functions during the worm construction needs to be slightly
modified in order to account for the presence of the explicit
worm weights in the worm’s propagation. For a detailed ac-
count on how the Green’s functions measurements are per-
formed using heat bath and standard directed loops with the
insertion and stopping probabilities of Sec. III C 1 and
III C 3, respectively, we refer to Ref.f24g. Here, we only
summarize the main point: In the standard directed loop al-
gorithm, the value of the Green’s function measurement for a
given distancesin space and imaginary timed between the
worm head and the worm tail equals the product of the ma-
trix element of the operator inserted at the head of the worm

fwhich would be in our notationskT̃ssduTusl, whereT denotes
again the transformation corresponding to the worm head
and s the local state of the world-line configuration, onto
which the worm head actsg times the matrix element inserted

at its tail fin our notationkT̃0ss0duT0us0l, whereT0 denotes the
transformation corresponding to thesstaticd worm tail ands0
the local state of the world-line configuration, onto which the
worm tail actsg. For a detailed graphical illustration of this
measurement process we refer to Ref.f24g. The only modi-
fication to this scheme, which arises from using generalized
directed loops is as follows: In the generalized directed loop
algorithm, the propagation of the worm head fulfills detailed
balance in the extended configuration space. The worm
head’s matrix elements are thus taken into account in the
probability to obtain a given configurationsin space and
imaginary timed between the worm head and the worm tail.
Therefore, in the generalized directed loop algorithm
the value of the Green’s function measurement equals

kT̃0ss0duT0us0lkT̃0ss0duT0us0l=kT̃0ss0duT0us0l2. Note that this is
independent ofT and s, and involves only the value of the

matrix elementkT̃0ss0duT0us0l2 from the static worm tail. The
Green’s function measurement in the generalized directed
loop algorithm thus requires significantly less evaluations of
matrix elements or accesses to their look-up table.

If one would furthermore choosePinsertsT,sd proportional

to kT̃0ss0duT0us0l, similar to the worm algorithmf6g discussed
in Sec. III C 1, the value of each Green’s function measure-
ment would be equal to 1, as for the worm algorithmf6g. In
fact, this way the matrix elements of both the worm head and

tail would be accounted for explicitly during the construction
of the worm and its propagation.

IV. NUMERICAL STRATEGY

In the preceding sections we derived generalized condi-
tions on the scattering probabilitiesPbi

sSi ,Ti−1→Ti , l i → l i8d,
which describe the motion of the worm head at each vertex
during the worm construction. We now look for solutions of
Eq. s14d, for which the bounce probability for each possible
vertex configuration is as small as possible. We expect this to
lead to an optimal algorithm in terms of autocorrelation
times. Here, we explain how to numerically solve Eq.s14d
for such probabilities. Note that the numerical procedure out-
line below also applies to the standard directed loop ap-
proach by simply settingfsT,sd equal to 1.

For a given vertex configuration we can construct from
the scattering probabilitiesPbi

sSi ,Ti−1→Ti , l i → l i8d a 434
“scattering matrix”P, whose elements are

Pkl = Pbi
sSi,Ti−1 → Ti,l → kd,

so that the elementPkl corresponds to the probability of ex-
iting from legk, given that the worm head entered the vertex
on leg l.

There are various constraints on the matrixP. In particu-
lar, Eq. s14d constraints the elements ofP according to de-
tailed balance. Furthermore, in order to be interpreted as
probabilities, all the matrix elements ofP must be contained
within f0, 1g—that is to say,

0 ø Pkl ø 1 ∀ k,l . s26d

Since the worm always leaves a vertex, we must have

o
k

Pkl = 1 ∀ l; s27d

i.e., each column ofP must be normalized to 1.
It is possible to add additional symmetry constraints onP.

While these are not necessary conditions, they might in-
crease the numerical accuracy in looking for the matrixP.
Given an entrance legl, let us call two legsk andh equiva-
lent, k,h, if the productfW on the right-hand side of Eq.
s14d gives the same value, independent of choosingk or h as
the exit leg. If two equivalent legsk andh both differ from
the entrance legl, they must be chosen as the exit leg with
equal probability—i.e.,

Pkl = Phl ∀ l Þ k,h,k , h. s28d

A similar condition can be derived for equivalent entrance
legs by consideration of the reversed process.

After characterizing the constraints on the scattering ma-
trix P, we can now formulate our optimization criterion in
terms ofP. Our goal is to construct an optimal directed loop
update, and as argued beforef12–14g we aim to minimize the
number of bounce processes—i.e. the bounce probabilities.
In our P-matrix language, this means that we need to mini-
mize all diagonalmatrix elements. In order not to introduce
any additional bias among the different bounce probabilities,
we require for the actual implementation to minimize the
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trace of the matrixP, thereby treating all bounce probabili-
ties equally:

minimize o
l

Pll . s29d

In previous studiesf12–15,17g, sets of probabilities satis-
fying all these conditions were obtained analytically for spe-
cific models. From the constraintss14d ands26d–s28d and the
optimization goals29d, we see that we arrive in front of a
linear programmingproblem for each scattering matrixP
f18g. This can be be solved numerically using standard linear
programming routinesf25g. In most cases, we found that at
most one diagonal matrix element was nonzero. We also note
here that the linear programming routines picks one of the
many possibly equally optimalfwith respect to condition
s29dg solutions depending on its initial search point. This
issue will be further discussed later.

This direct way of looking for the optimalsin terms of
bounce minimizationd solutions of the directed loop equa-
tions is not specific to any model and needs no preceding
analytical calculation. It allows for a rather generic imple-
mentation of the SSE algorithm, where after implementation
of the Hamiltonian, a standard minimization routinef25g can
be employed in order to obtain the scattering matrices prior
to starting the actual simulation.

V. ALGORITHMIC PHASE DIAGRAMS

In this section, we apply the preceding method to the
simulation of quantum systems which have been extensively
studied previously using the SSE QMC method.

To ensure that all diagonal matrix elements of the bond
Hamiltonians are positive, we add a constantC=C0+e per
bond to the original Hamiltonian whereC0 is the minimal
value for which all diagonal matrix elements are positive and
eù0. We will see that usually a finite value ofe is required
in order allow for regions in parameter space which are com-
pletely bounce free. In general, we find that increasinge
results in lower bounce probabilities. However, as the size of
the operator string grows withe, this leads to increasing
simulation times: there is clearly a trade-off between more
bounces but less CPU timessmall ed and less bounces but
more CPU timeslargeed. We expect that there is no general
rule how toa priori choose the value ofe in order to obtain
the smallest autocorrelation times.

A. Heisenberg model

First we consider the easy-axis spin-S Heisenberg model
in an external magnetic fieldh,

H = Jo
ki,jl

1

2
sSi

+Sj
− + Si

−Sj
+d + DSi

zSj
z − ho

i

Si
z, s30d

whereD denotes the easy-axis anisotropy and the first sum
extends over all nearest neighbors on thed-dimensional hy-
percubic lattice.

Numerically scanning the parameter spacesD ,hù0d, we
search for regions where our optimization procedure finds
bounce-free solutionssi.e., olPll =0 for all allowed verticesd.

From this procedure we obtain the algorithmic phase dia-
gram displayed in Fig. 7.

We find a finite region of the parameter spacesuDu
+h/ s2dSdøJd which corresponds to bounce-free solutions of
the generalized directed loop equations. Within this region
typically one needseùSJ/2. However, forD= ±J, we find
bounce-free solutions also fore=0. Outside the bounce-free
region at least one of the scattering matrices does not allow
for a traceless solution.

For S=1/2, Syljuåsen and Sandvik analytically found the
same bounce-free regionf12g. By monitoring the parameter
dependence of the finite bounce probabilities, we verified
that our numerical approach indeed yields their analytical
solution.

Syljuåsen recently extended the directed loop framework
proposed inf12g to spin-S modelsf13g. Within our frame-
work, his ansatz corresponds to settingfsT,sd=1. He finds
no region in parameter space where the directed loop equa-
tions allow for bounce-free solutions for anyS.1. We have
verified this by settingfsT,sd=1 and find that, forS.1,
there is indeed no bounce-free solution, using Syljuåsen’s
choice. ForS=1/2 andS=1, Syljuåsen recovers the phase
diagram shown in Fig. 7. This reflects the fact that forS
=1/2 andS=1 all nonzero matrix elements of theS± opera-
tors are equal and thus the factorsfsT,sd cancel out of the
generalized directed loop equations, making our generaliza-
tion equivalent to the standard approach. ForS.1 the gen-
eralized directed loop equations, including the worm weights
as extra degrees of freedom, however, allow for more
bounce-free solutions.

The algorithmic phase diagram shown in Fig. 7 was also
found to hold for the coarse-grained loop algorithmf14g.
This suggests that the numerically determined scattering
probabilities are similar to those of the coarse graining ap-
proach. This equivalence is also pointed out more clearly in
Ref. f26g.

B. Soft-core bosonic Hubbard model

Here we present algorithmic phase diagrams for the
bosonic Hubbard model, with Hamiltonian

FIG. 7. sColor onlined Algorithmic phase diagram for an easy-
axis anisotropic spin-SHeisenberg model in a magnetic fieldh field,
on ad-dimensional cubic lattice with nearest-neighbor exchangeJ.
The easy-axis anisotropy is denotedD. The shaded region indicates
those parameters for which a bounce-free solution of the general-
ized directed loop equations can be found.
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H = − to
ki,jl

ai
†aj + aiaj

† + sU/2do
i

nisni − 1d − mo
i

ni ,

s31d

where theai
† said denotes boson creationsdestructiond opera-

tors on sitesi, ni =ai
†ai the local density,t the hopping am-

plitude,U the on-site interaction, andm the chemical poten-
tial.

We need to restrict the simulation to a maximum number
Nmax.1 of bosons per lattice site, in order to obtain positive
diagonal bond Hamiltonian matrix elements. For the hard-
core bosonic caseNmax=1, we refer to the preceding section,
since the hard-core bosonic Hubbard model exactly maps
onto a spin-1/2 antiferromagnetic Heisenberg model.

Using our numerical optimization technique we arrive at
the algorithmic phase diagram shown in Fig. 8. There is a
finite region of bounce-free solutions to the directed loop
equations. However, this region shrinks upon increasing
Nmax, and we need to alloweùNmaxt /2 in order to recover
the complete bounce-free region.

Syljuåsen studied the directed loop equations for bosonic
models and did not obtain bounce-free regions for any
Nmax.1 f13g. The same result was obtained in Ref.f17g.
Again this indicates the importance of allowing the addi-
tional weight factors within our approach.

Smakovet al. f15g presented a coarse-grained loop algo-
rithm for the simulation of soft-core bosons. They present
results for free bosons for which no constraint on the occu-
pation number is necessary within the SSE approach. Since
their method proceeds directly in theNmax→` limit, we ex-
pect that using their algorithm there will remain no bounce-
free regions for finite on-site interaction.

For a soft-core bosonic model without a cutoff on the
maximum value of bosons per site, it is also possible to
perform simulations by imposing an initial cutoffNmax,
which is then adjusted during the course of the thermaliza-
tion process. With the numerical procedure at hand, it is easy
to recalculate the scattering matricesP when needed—
namely, when the current cutoff becomes too small and
needs to be increased.

VI. AUTOCORRELATION RESULTS

The results presented in the previous section suggest that
the generalized directed loop equations lead to efficient up-
date schemes. In particular, in many cases we could greatly
extend bounce-free regions in parameter space using the gen-
eralized directed loop method.

It is generally expected that reducing bounce processes
leads to more efficient algorithms. In this section, we there-
fore compare the efficiency of an arbitrarily picked solution
to the generalized directed loop algorithm to earlier ap-
proaches: the original heat bath choice for the scattering
probabilities by Sandvikf9g and the directed loop approach
by Syljuåsen and Sandvikf12,13g. This comparison is per-
formed using the example of the magnetization process of
quantum spin chains.

We define each MC step to consist of a full diagonal
update, followed by a fixed numberNw of worms updates,
whereNw is chosen such that on average twice the number of
vertices in the operator string are hit by those worms. We
perform a measurement after each such Monte Carlo step
and determine integrated autocorrelation times using stan-
dard methodsf3g.

In case the effort for a single MC step was the same for
each of the three algorithms, the integrated autocorrelation
time would establish a valid comparison between these algo-
rithms in terms of CPU time. Suppose, however, that a MC
step of Alg. A took twice the CPU time than a MC step using
Alg. B. In that case even with a 50% reduction of the auto-
correlation time upon using Alg. A, both would be equally
efficient, since in order to obtain a given number of indepen-
dent configurations, the same CPU time would be needed. In
the following, we therefore present a measure of autocorre-
lations, which takes the effort of each update scheme into
account in a machine independent way.

For this purpose, we define the worm sizew as the total
number of vertices that have been visited by the worm, in-
cluding those visited during bounce processesf14,18g. The
numberNw, calculated self-consistently during thermaliza-
tion, is then defined such thatNwkwl,2knl, whereknl is the
average number of nonidentity operators in the operator
string sk¯l denotes MC averagesd. In countingNw we in-
clude worms that are immediately stopped. The numberNw
can fluctuate from one simulation to another and, more, im-
portantly, depend on the underlying algorithm: indeed, the
worms constructed using different algorithms are not ex-
pected to be of the same size. In order to account for this
difference in effort, we multiply the integrated autocorrela-
tion times by a factorNwkwl / knl, which is close to 2 by
definition, but which might differ, depending on the underly-
ing algorithm.

The results presented below were obtained by the follow-
ing procedure: for each of the three algorithms we run simu-
lations containing 106 MC steps and calculate integrated au-
tocorrelation timest0 for various observablesf3g. From these
we obtain effort-corrected autocorrelation timest
=t0Nwkwl / knl, leading to a machine-independent measure of
efficiency. We applied the above procedure to the autocorre-
lations of the uniform magnetization and energy of antifer-

FIG. 8. sColor onlined Algorithmic phase diagram for the
bosonic Hubbard model on ad-dimensional cubic lattice with
nearest-neighbor hoppingt, on-site interaction strengthU, and a
chemical potentialm. Nmax denotes the cutoff in the local occupa-
tion number. The shaded region indicates the regime of bounce-free
solutions of the generalized directed loop equations.
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romagnetic spin chains in finite magnetic fields and present
results for the spin-3/2XY and the spin-2 Heisenberg case.

A. Spin-3/2 XY chain

We simulated the spin-3/2XY model fEq. s30d with D
=0g on a L=64 site chain at an inverse temperatureb
=64/J, for fields from zero up to saturation,h=3J. For the
simulations presented here, we chosee=SJ/2−h/4 which is
found to be the minimal value to have a bounce-free algo-
rithm for anXY chain in a field. The magnetic field depen-
dence of the bounce probability is shown for all three algo-
rithms in Fig. 9. The bounce probability is rather large
s30%–45% for all fieldsd for the heat bath algorithm and
significantly reducedsto less than 2%d using the standard
directed loop equations, while it vanishes all the way up to
the saturation field using generalized directed loops.

The rescaled autocorrelation times of the magnetization
stmd and energystEd are shown as functions of the magnetic
field strength in Figs. 10 and 11, respectively. Using the heat
bath algorithm,tm increases upon increasingh, while tE de-
creases. The uniform magnetization of the MC configuration
is updated only during the operator-loop updates, while the
energy is not changed during this update stepf9g. Therefore
autocorrelations in the energy measurements are less sensi-
tive to the efficiency of the operator-loop update and mainly
decrease with field strength, due to increasing operator string
lengths. In both the low- and high-field regions, the improve-
ments of standard and generalized directed loops upon using
the heat bath algorithm are clearly seen for both the energy
and magnetization in Figs. 10 and 11. Within our scheme, we
find small but not significant improvements over the standard
directed loops, and forh,J, the bounce-free solution even
results in slightly larger autocorrelation times than the heat
bath method.

This clearly indicates that one must include further strat-
egies, besides the bounce minimization, in order to obtain a
better algorithm, as will be discussed in Sec. VII.

B. Spin-2 Heisenberg chain

Next, we consider the isotropicsD=1d antiferromagnetic
spin-2 Heisenberg model in a magnetic field. We simulated a
chain withL=64 sites atbJ=64 and for fields ranging from
zero up to saturation ath=4J and usinge=SJ/2. In Fig. 12,
the resulting bounce probabilities are shown as functions of
magnetic field strength for the three algorithms. Similar to
the previous case, the bounce probabilities are rather high
susing heat bath,,34% –42%d, whereas they are signifi-
cantly reduced using the directed loop algorithmssless than
1% in both casesd. Even though the bounce probabilities are
finite at h.0 for the generalized directed loop algorithm,

FIG. 9. sColor onlined Bounce probabilities using the heat bath
algorithm, standard directed loops, and generalized directed loops
for a L=64 sites spin-3/2XY chain in a magnetic fieldh at b
=64/J. A different scale is used for the heat bath algorithm.

FIG. 10. sColor onlined Autocorrelation times for the uniform
magnetization, measured using heat bath, standard directed loops,
and generalized directed loops for aL=64 sites spin-3/2XY chain
in a magnetic fieldh at b=64/J.

FIG. 11. sColor onlined Autocorrelation times for the energy,
measured using heat bath, standard directed loops, and generalized
directed loops for aL=64 sites spin-3/2XY chain in a magnetic
field h at b=64/J.
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they are smaller than for the standard directed loop algo-
rithm. Furthermore, in the limit of zero field, using general-
ized directed loops leads to a vanishing bounce probability.

In Figs. 13 and 14, we present results for rescaled auto-
correlation times of the magnetizationstmd and energystEd.
The dependence oftm on the magnetic field has a similar
tendency for all three algorithms: starting from a small value
at zero field,tM is sharply peaked ath,0.1J and decreases
rapidly upon further increasing the field strength, reaching an
almost constant value. This sharp peak aroundh,0.1J prob-
ably corresponds to the closure of the Haldane gapfesti-
mated asDH=0.08917s4dJ for the spin-2 chainf27gg by the
magnetic field. We observe thattM is larger by nearly a

factor of 3 using heat bath rather than directed loops. This is
expected given the larger bounce probabilities in Fig. 12. We
find that independent of the magnetic field strength,tm is less
for the generalized directed loop algorithm than for the stan-
dard one.

Concerning the autocorrelation timestE shown in Fig. 14,
we reach similar conclusions as for the spin-3/2XY case: the
autocorrelation times of the energy are reduced by a factor of
around 2 from those using the heat bath algorithm.

VII. OPTIMIZING DIRECTED LOOP ALGORITHMS

The results in the previous section clearly indicate that
minimizing bounces alone is not sufficient to obtain an effi-
cient algorithm, since the bounce-freesor bounce-
minimizedd solution is not uniquef13,17g. The numerical
lineal programming solver employed picks a particular solu-
tion, which might not be the optimal one in terms of auto-
correlations. In this section, we present supplementary strat-
egies aiming at locating more efficient solutions. We note
that these strategies are not specific to the generalized di-
rected loop scheme presented in the previous sections, but
can also be used to optimize the standard directed loop ap-
proachf12,13g.

A. Supplementary strategies

Apart from the “bounce” path, where the worm back-
tracks, there are three other paths that a worm can take across
a vertex. We denote these other paths as “jump,” “straight,”
and “turn” f24g. See Fig. 15 for an illustration of these defi-
nitions.

Once the bounces have been minimized or even elimi-
nated, one might consider the effects of the remaining three
paths of the worm-scattering process on the autocorrelation
times. A practical means of doing so is as follows: First, we

FIG. 12. sColor onlined Bounce probabilities using the heat bath
algorithm, standard directed loops, and generalized directed loops
for a L=64 sites spin-2 antiferromagnetic Heisenberg chain in a
magnetic fieldh at b=64/J. A different scale is used for the heat
bath algorithm.

FIG. 13. sColor onlined Autocorrelation times for the uniform
magnetization, measured using the heat bath algorithm, standard
directed loops, and generalized directed loops for aL=64 sites
spin-2 antiferromagnetic Heisenberg chain in a magnetic fieldh at
b=64/J. The inset shows on a larger scale the autocorrelation times
using directed loops at small values of the field.

FIG. 14. sColor onlined Autocorrelation times for the energy,
measured using heat bath, standard directed loops, and generalized
directed loops for aL=64 sites spin-2 antiferromagnetic Heisenberg
chain in a magnetic fieldh at b=64/J.
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use linear programming to minimize the bouncesfEq. s29dg
and to obtain for each vertex configuration the lowest value
of the bouncesdenotedb, whereb can take a different value
for each possible vertexd. In a second step, we thenimpose
the conditionolPll =b as a new constraint, in addition to Eqs.
s26d–s28d, so that any feasible solution will be in the optimal
subspace with respect to bounce minimization.

We then consider new optimization goals, each chosen
from the six following possibilities: we could minimize or
maximize the jump, straight or turn probabilities. The jump
probabilities simply correspond to the scattering matrix ele-
mentsP14, P41, P23, P32, the straight probabilities toP13, P31,
P24, P42, and the turn probabilities toP12, P21, P34, P43. For
each of the six different strategies, we use linear program-
ming with the additional constraint to minimize or maximize
the sum of these matrix elements for each vertex configura-
tion. Then we use the resulting scattering matrices in the SSE
algorithm. Note that due to the additional constraint, we ex-
plicitly ensure that these algorithms will have a minimal
number of bounces. Doing so, we obtain six sets of scatter-
ing matrices, each corresponding to one of the above optimi-
zation goals.

B. Results

As an example of testing the efficiency of these strategies,
we consider theS=3/2 XY chain in the parameter regime,
where we found the generic solution of the generalized di-
rected loop equations in Sec. VI A to perform worse than the
heat bath solution. In particular, we consider a chain with
L=64, bJ=64, e=SJ/2, and a value of the magnetic field
h=0.6J.

In Table I we present results for the autocorrelation times
of the magnetizationstMd, staggered magnetizationstMs

d,
and energystEd from using each of the six different strate-
gies.

The subspace of bounce-free solutions contains algo-
rithms with autocorrelation times varying by about an order
of magnitude; this indicates that a solution taken from this
subspace without further guidance in general will not be the
optimal one.

From Table I we furthermore find that the optimal addi-
tional strategy depends on the observable of interest. For
example, in order to minimize the autocorrelation times of
the energy, maximizing jumps is more efficient than maxi-
mizing the straight path, whereas for the staggered magneti-
zation the two strategies perform opposite. This indicates
that in general it will not be possible to obtain a unique
optimal strategy beyond the minimization of bounces.

Minimizing bounces appears reasonable from an algorith-
mic point of view, in order to prevent undoing previous
changes to a QMC configuration. However, autocorrelations
are also related to the physical phases of the model under
consideration and thus less well captured by a generic local
prescription for the worm propagation. In practice, the most
efficient way to proceed for a given model will be to perform
simulations for each different strategy on small systems, in
order to determine the optimal strategy for the observable of
interest before performing production runs on larger systems.

In order to illustrate the reduction of autocorrelation times
that can be achieved using this scheme, we finally consider
the spin-3/2XY chain throughout the whole region of mag-
netic fields,h=0.4J–1.3J, where we found the unexpected
increase in the autocorrelation timesssee Fig. 10d. The re-
sulting minimal autocorrelation times for the magnetization
are shown in Fig. 16, along with the results for the autocor-
relation times using heat bath, standard, and generalized di-
rected loopsswithout additional constraintsd. Our results
clearly demonstrate that the optimal algorithm gives rise to
much better performance, in particular curing the autocorre-
lation time anomaly found in the previous section. We find
that the optimal strategy depends on the magnetic field
strength: for example, we find the best strategy to besid
maximizing jumps for fields strengthsh=0.4J, 0.5J, 0.7J,
1.1J, and 1.3J, sii d minimizing turns forh=0.6J, 1.0J, and
1.2J, and siii d maximizing straight moves forh=0.8J and
0.9J.

FIG. 15. sColor onlined The different paths a worm can take
across a vertex: “bounce,” “jump,” “straight,” or “turn.”

TABLE I. Autocorrelation times for the uniform magnetization
stMd, the staggered magnetizationstMs

d, and the energystEd for the
generalized directed loop algorithm applied to aL=64 sites spin-
3/2 XY chain in a magnetic fieldh=0.6 atb=64/J, obtained using
algorithms where supplementary strategies have been used after
minimization of bounces, as explained in the text, fore=3/4J.

Supplementary strategy tM tMs
tE

Maximize jump 2.9 20.4 6.4

Minimize jump 22.9 12.5 16.9

Maximize straight 2.9 6.4 9.4

Minimize straight 12.4 22.5 13.2

Maximize turn 45.7 22.4 25.2

Minimize turn 2.7 23.6 6.6
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VIII. CONCLUSION

In this paper we presented a generalized approach to the
construction of directed loops in quantum Monte Carlo simu-
lations. Viewing the worms ends not as artificial discontinui-
ties, but as physical operators with corresponding weights we
arrived at generalizations of the directed loop equations. Us-
ing linear programming techniques to solve these equations
we can avoid the analytical calculations needed in previous
approaches and arrive at a generic QMC algorithm.

The generalized directed loop equations allow bounce-
free solutions in larger regions of parameter space, but mea-
surements of autocorrelation times for several models
showed that minimizing bounces is not always sufficient to
obtain an efficient algorithm.

We therefore proposed a different means of further opti-
mizing directed loop algorithms inside the subspace of
bounce-minimal solutions. Additional strategies were pre-
sented, the use of which improves the performance up to an
order of magnitude. However, the optimal strategy in general
depends on both the modeland the observable of interest.
One therefore needs to perform preliminary simulations to
find out which supplementary strategy is optimal for a given
problem before turning to long calculations, in order to ac-
count for the physical phase realized in the specific param-
eter regime.

A recent paperf28g discussed issues similar to the ones
addressed here: can one obtain strategies that improve the

efficiency of QMC algorithms beyond the directed loop
scheme? In our understanding of their work, the authors of
Ref. f28g propose toalwayskeep a nonzero bounce probabil-
ity to vertices with the largest weight. They then provide a
precise form of the scattering matrices. In Ref.f13g, Syl-
juåsen also proposed to keep a nonzero bounce probability
for the vertex with the largest weight in situations where he
did not find bounce-free solutions. The main difference be-
tween the approach of Polletet al. and Syljuåsen thus con-
cerns the off-diagonal elements of the scattering matrix. As
shown explicitly in Sec. VII, the off-diagonal matrix ele-
ments strongly affect the efficiency of the algorithm in a
parameter- and observable-dependent way. This indicates
that there will be no simple rule for the construction of the
scattering matrices, which perform optimal in all cases.
Similar conclusions were reached in Ref.f28g. A full SSE
code featuring the implementation of the generalized di-
rected loop technique described in the present paper is avail-
able as part of the ALPS projectf29g.
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